Linear Guideway

## The Characteristics of PMI Linear

 Guideways
## High positioning accuracy, high repeatability

The PMI linear guideway is a design of rolling motion with a low friction coefficient, and the difference between dynamic and static friction is very small. Therefore, the stick-slip will not occur when submicron feeding is making.

Low frictional resistance, high precision maintained for long period
The frictional resistance of a linear guideway is only $1 / 20$ th to $1 / 40$ th of that in a slide guide. With a linear guideway, a well lubrication can be easily achieved by supplying grease through the grease nipple on carriage or utilizing a centralized oil pumping system, thus the frictional resistance is decreased and the accuracy could be maintained for long period.

High rigidity with four-way load design
The optimum design of geometric mechanics makes the linear guideway to bear the load in all four directions, radial, reversed radial, and two lateral directions. Furthermore, the rigidity of linear guideway could be easily achieved by preloading carriage and by adding the number of carriages.

Suitable for high speed operation
Due to the characteristic of low frictional resistance, the required driving force is much lower than in other systems, thus the power consumption is small. Moreover, the temperature rising effect is small even under high speed operation.

Easy installation with interchangeability
Compared with the high-skill required scrapping process of conventional slide guide, the linear guideway can offer high precision even if the mounting surface is machined by milling or grinding. Moreover the interchangeability of linear guideway gives a convenience for installation and future maintenance.


The Classification Chart of PMI Linear Guideways

\begin{tabular}{|c|c|c|c|c|}
\hline Type \& \& Model \& Characteristics \& Major Application \\
\hline \multirow{3}{*}{Full Ball, Heavy Load Type} \& MSA-A MSA-LA \&  \& \multirow{3}{*}{\begin{tabular}{l}
- Heavy Load, High Rigidity \\
- Self Alignment Capability \\
- Smooth Movement \\
- Low Noise \\
- Interchangeability
\end{tabular}} \& \multirow[b]{4}{*}{\begin{tabular}{l}
Machine Center \\
NC Lathe \\
XYZ Axes of Heavy Cutting Machine Tools \\
Grinding Machine Working Table \\
Feed Shaft of Milling Machine \\
Vertical or Horizontal Boring Machine \\
Z Axis of Boring Machine and Machine Tools \\
Auto Coating Machine \\
Industrial Robot \\
Various High Speed Material Supply Device \\
Z Axis of Industiral Machine \\
Binding Machine \\
EDM \\
Measuring Equipment \\
Precision XY Table
\end{tabular}} \\
\hline \& MSA-E MSA-LE \&  \& \& \\
\hline \& MSA-S MSA-LS \&  \& \& \\
\hline Full Ball, Compact Type \& \begin{tabular}{l}
MSB-TE \\
MSB-E \\
MSB-TS \\
MSB-S
\end{tabular} \&  \& \begin{tabular}{l}
- Compact, High Load \\
- Self Alignment Capability \\
- Smooth Movement \\
- Low Noise \\
- Interchangeability
\end{tabular} \& \\
\hline Full Ball, Wide Rail Type \& MSG-E

MSG-S \&  \& \begin{tabular}{l}
- Heavy Load, High Rigidity <br>
- Self Alignment Capability <br>
- Smooth Movement <br>
- Low Noise <br>
- Interchangeability

 \& 

Machine Center <br>
Auto Coating Machine <br>
Vertical or Horizontal Boring Machine <br>
Binding Machine <br>
Laser Cutting Machine
\end{tabular} <br>

\hline \& \& \& \& *PMI <br>
\hline
\end{tabular}

| Type |  | Model | Characteristics | Major Application |
| :---: | :---: | :---: | :---: | :---: |
| Full Ball, Miniature Type | MSC <br> MSD |  | - Ultra Compact <br> - Smooth Movement <br> - Low Noise <br> - Ball Retainer <br> - Interchangeability | IC/LSI Manufacturing Machine Hard Disc Drive <br> Slide Unit of OA Equipment Wafer Transfer Equipment Inspection Equipment Medical Equipment |
| Full Roller, Heavy Load Type | MSR-E <br> MSR-LE <br> MSR-S <br> MSR-LS |  | - Ultra Heavy Load <br> - Ultra High Rigidity <br> - Smooth Movement <br> - Low Noise <br> - Good lubricant Eect | Machine Center <br> NC Lathe <br> Grinding Machine <br> Five Axes Milling Machine <br> Jig Borer <br> Drilling Machine <br> CNC Milling Machine <br> Plano Milling Machine <br> Mold Processing Machine <br> EDM |



Characteristics

Utra Heavy Load

- Ultra High Rigidity
- Roller Chain Design
- Smooth Movement
- Low Noise
- Good Lubricant Eect

Major Application

Machine Center
NC Lathe
Grinding Machine
Five Axes Milling Machine
Jig Borer
Drilling Machine
CNC Milling Machine
Plano Milling Machine
Mold Processing Machine
EDM
Machine Center
NC Lathe
XYZ Axes of Heavy Cutting Machine Tools Grinding Machine Working Table Feed Shaft of Milling Machine
Vertical or Horizontal Boring Machine
Z Axis of Boring Machine and Machine Tools Auto Coating Machine
Industrial Robot
Various High Speed Material Supply Device
Z Axis of Industiral Machine
Binding Machine
Measuring Equipment
Precision XY Table

## Machine Center

NC Lathe
XYZ Axes of Heavy Cutting Machine Tools Grinding Machine Working Table Feed Shaft of Milling Machine Vertical or Horizontal Boring Machine Z Axis of Boring Machine and Machine Tools Auto Coating Machine Industrial Robot Various High Speed Material Supply Device Z Axis of Industiral Machine
Binding Machine
EDM
Measuring Equipment
Precision XYTable

| Type |  | Model | Characteristics | Major Application |
| :---: | :---: | :---: | :---: | :---: |
| Ball Chain Heavy Load Type | SMA-S |  | - High Rigidity, Four-Way Equal Load <br> - Self Alignment Capability <br> - Interchangeability <br> - MSA And SMA Use One Rail At The Same Time <br> - Smooth Movement, Ball Chain Type Design <br> - Good Lubricant Effect | Machine Center <br> NC Lathe <br> XYZ Axes of Heavy Cutting Machine Tools <br> Grinding Machine Working Table <br> Feed Shaft of Milling Machine <br> Vertical or Horizontal Boring Machine |
| Ball Chain Compact Type | SMB-E <br> SMB-S |  | - Compact, Four-Way Equal Load <br> - Self Alignment Capability <br> - Interchangeability <br> - MSB And SMB Use One Rail At The Same Time <br> - Smooth Movement, Ball Chain Type Design <br> - Good Lubricant Effect | Z Axis of Boring Machine and Machine Tools Auto Coating Machine Industrial Robot Various High Speed Material Supply Device Z Axis of Industiral Machine Binding Machine <br> EDM <br> Measuring Equipment <br> Precision XY Table |

The Procedure of
Select Linear Guideway

## Load Rating and Service Life of Linear Guideway

To obtain a model which is most suitable for your service conditions of the linear guideway system, the load capacity and service life of the model must be taken into consideration. To verify the static load capacity, the basic static load rating ( $C 0$ ) is taken to obtain the static safety factor. The service life can be obtained by calculating the nominal life based on basic dynamic load rating. As the raceways or rolling elements are subjected repeated stresses, the service life of a linear guideway is defined as the total running distance that the linear guideway travel until flaking occurs.

## Basic Static Load Rating $\left(C_{0}\right)$

A localized permanent deformation will develop between raceways and rolling elements when a linear guideway receives an excessive load or a large impact. If the magnitude of the deformation exceeds a certain limit, it could obstruct the smooth motion of the linear guideway. The basic static load rating $\left(C_{0}\right)$ refers to a static load in a given direction with a specific magnitude applied at the contact area under the most stress where the sum of permanent deformation develops between the raceway and rolling elements is 0.0001 times of the diameter of rolling ball. Therefore, the basic static load rating sets a limit on the static permissible load.

## Static Permissible Moment $\left(M_{0}\right)$

When a moment is applied to a linear guideway, the rolling balls on both ends will receive the most stress among the stress distribution over the rolling elements in the system. The static permissible moment $\left(M_{0}\right)$ refers to a static moment in a given direction with specific magnitude applied at the contact area under the most stress where the sum of permanent deformation develops between the raceway and rolling elements is 0.0001 times the diameter of rolling elements. Therefore, the static permissible moment sets a limit on the static moment. In linear guideway system, the static permissible moment is defined as $M_{P}, M_{Y}, M_{R}$ three directions. See the figure below.


## Static Safety Factor $\left(f_{s}\right)$

Due to the impact and vibration while the guideway at rest or moving, or the inertia from start and stop, the linear guideway may encounter with an unexpected external force. Therefore, the safety factor should be taken into consideration for effects of such operating loads. The static safety factor $\left(f_{s}\right)$ is a ratio of the basic static load rating $\left(C_{0}\right)$ to the calculated working load. The static safety factor for different kinds of application is shown as Table.
$f_{s}=\frac{C_{0}}{P}$ or $f_{s}=\frac{M_{0}}{M}$
$f_{s} \quad$ Static safety factor
$C_{0}$ Basic static load rating ( $N$ )
$M_{0}$ Static permissible moment $(N \cdot m)$
$P \quad$ Calculated working load ( $N$ )
M Calculated moment ( $N \cdot m$ )

| Machine Type | Load Condition | $f_{s}$ (Lower limit) |
| :---: | :---: | :---: |
| Regular industrial <br> machine | Normal loading condition | $1.0 \sim 1.3$ |
|  | With impact and vibration | $2.0 \sim 3.0$ |
| Machine tool | Normal loading condition | $1.0 \sim 1.5$ |
|  | With impact and vibration | $2.5 \sim 7.0$ |

## Basic Dynamic Load Rating ( $C$ )

Even when identical linear guideways in a group are manufactured in the same way or applied under the same condition, the service life may be varied. Thus, the service life is used as an indicator for determining the service life of a linear guideway system. The nominal life $(L)$ is defined as the total running distance that $90 \%$ of identical linear guideways in a group, when they are applied under the same conditions, can work without developing flaking. The basic dynamic load rating $(C)$ can be used to calculate the service life when linear guideway system response to a load. The basic dynamic load rating $(C)$ is defined as a load in a given direction and with a given magnitude that when a group of linear guideways operate under the same conditions. As the rolling element is ball, the nominal life of the linear guideway is 50 km . Moreover, as the rolling element is roller, the nominal life is 100 km .

## Calculation of Nominal Life $(L)$

The nominal life of a linear guideway can be affected by the actual working load. The nominal life can be calculated base on selected basic dynamic load rating and actual working load. The nominal life of linear guideway system could be influenced widely by environmental factors such like hardness of raceway, environmental temperature, motion conditions, thus these factors should be considered for calculation of nominal life.

$$
\begin{array}{clll}
\text { Ball } L=\left(\frac{f_{H} \times f_{T}}{f_{W}} \times \frac{C}{P}\right)^{3} \times \mathbf{5 0} & C & \text { Nominal life (km) } \\
& & P & \text { Wasic dynamic load rating }(N) \\
\text { Roller } & L=\left(\frac{f_{H} \times f_{T}}{f_{W}} \times \frac{C}{P}\right)^{\frac{10}{3}} \times 100 & f_{H} & \text { Hardness factor }(N) \\
& f_{T} & \text { Temperature factor } \\
& f_{W} & \text { Load factor }
\end{array}
$$

## Hardness factor $f_{H}$

In order to ensure the optimum load capacity of linear guideway system, the hardness of raceway must be HRC58~64. If the hardness is lower than this range, the permissible load and nominal life will be decreased. For this reason, the basic dynamic load rating and the basic static load rating should be multiplied by hardness factor for rating calculation. See figure below. The hardness requirement of PMI linear guideway(in addition to miniature type) is above HRC58~62, thus the $f_{H}=1.0$.


## Temperature factor $f_{T}$

When operating temperature higher than $100^{\circ} \mathrm{C}$, the nominal life will be degraded. Therefore, the basic dynamic and static load rating should be multiplied by temperature factor for rating calculation. See figure below. The assemble parts of PMI guideway are made of plastic and rubber, therefore, the operating temperature below $100^{\circ} \mathrm{C}$ is strongly recommend. For special need, please contact us.


## Load factor $f_{w}$

Although the working load of liner guideway system can be obtained by calculation, the actual load is mostly higher than calculated value. This is because the vibration and impact, caused by mechanical reciprocal motion, are difficult to be estimated. This is especially true when the vibration from high speed operation and the impact from repeated start and stop. Therefore, for consideration of speed and vibration, the basic dynamic load rating should be divided by the empirical load factor. See the table below.

| Motion Condition | Operating Speed | $f_{W}$ |
| :---: | :---: | :---: |
| No impact \& vibration | $\mathrm{V} \leqq 15 \mathrm{~m} / \mathrm{min}$ | $1.0 \sim 1.2$ |
| Slight impact \& vibration | $15<\mathrm{V} \leqq 60 \mathrm{~m} / \mathrm{min}$ | $1.2 \sim 1.5$ |
|  <br> vibration | $60<\mathrm{V} \leqq 120 \mathrm{~m} / \mathrm{min}$ | $1.5 \sim 2.0$ |
| Strong impact \& vibration | $\mathrm{V} \geqq 120 \mathrm{~m} / \mathrm{min}$ | $2.0 \sim 3.5$ |

## Calculation of Service Life in Time $\left(L_{h}\right)$

When the nominal life ( L ) is obtained, the service life in hours can be calculated by using the following equation when stroke length and reciprocating cycles are constant.

$$
L_{h}=\frac{L \times 10^{3}}{2 \times l_{S} \times n_{1} \times 60}
$$

$L_{h} \quad$ Service life in hours ( $h r$ )
$L$ Nominal life ( km )
$l_{S} \quad$ Stroke length ( $m$ )
$n_{I} \quad$ No. of reciprocating cycles per minute $\left(\mathrm{min}^{-1}\right)$

## Friction Coefficient

## Calculation of Working Load

A linear guideway manipulates linear motion by rolling elements between the rail and the carriage. In which type of motion, the frictional resistance of linear guideway can be reduced to $1 / 20$ th to $1 / 40$ th of that in a slide guide. This is especially true in static friction which is much smaller than that in other systems. Moreover, the difference between static and dynamic friction is very little, so that the stick-slip situation does not occur. As such low friction, the submicron feeding can be carried out. The frictional resistance of a linear guideway system can be varied with the magnitude of load and preload, the viscosity resistance of lubricant, and other factors. The frictional resistance can be calculated by the following equation base on working load and seals resistance. Generally, the friction coefficient will be different from series to series, the friction coefficient of ball type is 0.002~0.003 (without considering the seal resistance) and the roller type is $0.001 \sim 0.002$ (without considering the seal resistance)
$F \quad$ Frictional resistance (kgf)
$F=\boldsymbol{\mu} \times \boldsymbol{P}+f$
Dynamic friction coefficien
$P$ Working load (kgf)
$f \quad$ Seal resistance ( $\mathrm{kg} f$ )


Load ratio (P/C)
P: Working load
C: Basic dynamic load rating

Relationship between working load and friction coefficient

The load applied to a linear guideway system could be varied with several factors such as the location of the center gravity of an object, the location of the thrust, and the inertial forces due to acceleration and deceleration during starting and stopping
o select a correct linear guideway system, the above conditions must be considered for determining the magnitude of applied load

Examples for calculating working load
Type
Operation
Conditions

Uniform motion or at rest $\quad$| $P_{2}=\frac{F}{4}+\frac{F \cdot l_{3}}{2 \cdot l_{1}}-\frac{F \cdot l_{4}}{2 \cdot l_{2}}$ |
| :--- |
| $P_{3}=\frac{F}{4}-\frac{F \cdot l_{3}}{2 \cdot l_{1}}-\frac{F \cdot l_{4}}{2 \cdot l_{1}}+\frac{F \cdot l_{4}}{2 \cdot l_{2}}$ |
| $P_{4}=\frac{F}{4}+\frac{F \cdot l_{3}}{2 \cdot l_{1}}+\frac{F \cdot l_{4}}{2 \cdot l_{2}}$ |

$$
\begin{aligned}
& P_{1}=\frac{F}{4}+\frac{F \cdot l_{3}}{2 \cdot l_{1}}+\frac{F \cdot l_{4}}{2 \cdot l_{2}} \\
& P_{2}=\frac{F}{4}-\frac{F \cdot l_{3}}{2 \cdot l_{1}}+\frac{F \cdot l_{4}}{2 \cdot l_{2}} \\
& P_{3}=\frac{F}{4}-\frac{F \cdot l_{3}}{2 \cdot l_{1}}-\frac{F \cdot l_{4}}{2 \cdot l_{2}} \\
& P_{4}=\frac{F}{4}+\frac{F \cdot l_{3}}{2 \cdot l_{1}}-\frac{F \cdot l_{4}}{2 \cdot l_{2}}
\end{aligned}
$$




Type

Operation
Conditions

$$
\begin{aligned}
& P_{1}=P_{2}=P_{3}=P_{4}=\frac{F \cdot l_{4}}{2 \cdot l_{2}} \\
& P_{I T}=P_{4 T}=\frac{F}{4}+\frac{F \cdot l_{3}}{2 \cdot l_{1}} \\
& P_{2 T}=P_{3 T}=\frac{F}{4}-\frac{F \cdot l_{3}}{2 \cdot l_{1}}
\end{aligned}
$$





Velocity diagram

During acceleration
$P_{1}=P_{4}=\frac{m g}{4}-\frac{m \cdot a_{1} \cdot l_{3}}{2 \cdot l_{1}}$
During deceleration
$P_{2}=P_{3}=\frac{m g}{4}+\frac{m \cdot a_{\cdot} \cdot l_{3}}{2 \cdot l_{1}}$
$P_{I T}=P_{2 T}=P_{3 T}=P_{4 T}=\frac{m \cdot a_{1} \cdot l_{4}}{2 \cdot l_{1}}$
$P_{1}=P_{4}=\frac{m g}{4}+\frac{m \cdot a_{3} \cdot l_{3}}{2 \cdot l_{1}}$
$P_{2}=P_{3}=\frac{m g}{4}-\frac{m \cdot a_{3} \cdot l_{3}}{2 \cdot l_{1}}$
$P_{I T}=P_{2 T}=P_{3 T}=P_{4 T}=\frac{m \cdot a_{3} \cdot l_{4}}{2 \cdot l_{l}}$
In uniform motion
$P_{1}=P_{2}=P_{3}=P_{4}=\frac{m g}{4}$

## Calculation of the Equivalent Load

## Vertical application

Subjected to inertia

Operation
Conditions


Velocity diagram

Equations

During deceleration
$P_{1}=P_{2}=P_{3}=P_{4}=\frac{m \cdot\left(g-a_{3}\right) \cdot l_{3}}{2 \cdot l_{1}}$
$P_{I T}=P_{2 T}=P_{3 T}=P_{4 T}=\frac{m \cdot\left(g-a_{3}\right) \cdot l_{4}}{2 \cdot l_{1}}$

In uniform motion
$P_{1}=P_{2}=P_{3}=P_{4}=\frac{m \cdot g \cdot l_{3}}{2 \cdot l_{1}}$
$P_{I T}=P_{2 T}=P_{3 T}=P_{4 T}=\frac{m \cdot g \cdot l_{4}}{2 \cdot l_{I}}$

The linear guideway system can take up loads and moments in all four directions those are radial load, reverse-radial load, and lateral load simultaneously. When more than one load is exerted on linear guideway system simultaneously, all loads could be converted into radial or lateral equivalent load for calculating service life and static safety factor. PMI linear guideway has four-way equal load design. The calculation of equivalent load for the use of two or more linear guideways is shown as below.

$$
P_{E}=\left|P_{R}\right|+\left|P_{T}\right|
$$

$P_{E} \quad$ Equivalent load ( $N$ )
$P_{R} \quad$ Radial or reverse-radial load ( $N$ )
$P_{T}$ Lateral load ( $N$ )


For the case of mono rail, the moment effect should be considered. The equation is:

$$
P_{E}=\left|P_{R}\right|+\left|P_{T}\right|+C_{0} \cdot \frac{|M|}{M_{R}}
$$

$P_{E}$ Equivalent load ( $N$ )
$P_{R} \quad$ Radial or reverse-radial load ( $N$ )
$P_{T} \quad$ Lateral load ( $N$ )
$C_{0} \quad$ Basic static load rating ( $N$ )
$M$ Calculated moment ( $N \cdot m$ )
$M_{R} \quad$ Permissible static moment $(N \cdot m)$


## The Calculation of the Mean Load

When a linear guideway system receives varying loads, the service life could be calculated in consideration of varying loads of the host-system operation conditions. The mean load $(P m)$ is the load that the service life is equivalent to the system which under the varying load conditions. The equation of mean load is:
$P_{m} \quad$ Mean load ( $N$ )
$P_{m}=\sqrt[e]{\frac{1}{L} \cdot \sum_{n=1}^{n}\left(P_{n}^{e} \cdot L_{n}\right)}$
$P_{n} \quad$ Varying load ( $N$ )
$L$ Total running distance ( mm )
$L_{n} \quad$ Running distance under load $P_{n}(\mathrm{~mm})$
$e \quad$ Exponent (Ball type:3, Roller type:10/3)

Examples for calculating mean load

Types of Varying Load
Calculation of Mean Load

Loads that change stepwise

$P_{m}=e \sqrt{\frac{1}{L}\left(P_{1}^{e} \cdot L_{1}+P_{2}^{e} \cdot L_{2} \cdots+P_{n}^{e} \cdot L_{n}\right)}$
$P_{m}$ Mean load ( $N$ )
$P_{n} \quad$ Varying load ( $N$ )
$L \quad$ Total running distance ( mm )
$L_{n} \quad$ Running distance under load $P_{n}(m m)$

Types of Varying Load
Calculation of Mean Load

Loads that change monotonously


$$
P_{m} \cong \frac{1}{3}\left(P_{\min }+2 \cdot P_{\max }\right)
$$

$P_{m} \quad$ Mean load ( $N$ )
$P_{\text {min }}$ Minimum load ( $N$ )
$P_{\max }$ Maximum load ( $N$ )

$P_{\boldsymbol{m}} \cong \mathbf{0 . 7 5} \cdot P_{\max } \quad P_{m} \quad$ Mean load ( $N$ ) $P_{\max }$ Maximum load ( $N$ )

$\boldsymbol{P}_{\boldsymbol{m}} \cong 0.65 \cdot P_{\max } \quad \begin{aligned} & P_{m}\end{aligned} \quad$ Mean load $(N)$ $P_{\text {max }}$ Maximum load ( $N$ )

Loads that change sinusoidally

## Calculation Example

## Operation conditions

Modle MSA35LA2SSFC + R2520-20/20 P II
Basic dynamic load rating : $\mathrm{C}=63.6 \mathrm{kN}$
Basic static load rating : $\mathrm{C}_{0}=100.6 \mathrm{kN}$

| Mass | $m_{1}=700 \mathrm{~kg}$ | Stroke | $\mathrm{I}_{\mathrm{s}}=1500 \mathrm{~mm}$ |
| :--- | :--- | :--- | :--- |
|  | $\mathrm{~m}_{2}=450 \mathrm{~kg}$ | Distance | $\mathrm{I}_{1}=650 \mathrm{~mm}$ |
| Velocity | $\mathrm{V}=0.75 \mathrm{~m} / \mathrm{s}$ |  | $\mathrm{I}_{2}=450 \mathrm{~mm}$ |
|  |  |  | $\mathrm{I}_{3}=135 \mathrm{~mm}$ |
| Time | $\mathrm{t}_{1}=0.05 \mathrm{~s}$ |  | $\mathrm{I}_{4}=60 \mathrm{~mm}$ |
|  | $\mathrm{t}_{2}=1.9 \mathrm{~s}$ |  | $\mathrm{I}_{5}=175 \mathrm{~mm}$ |
|  | $\mathrm{t}_{3}=0.15 \mathrm{~s}$ |  | $\mathrm{I}_{6}=400 \mathrm{~mm}$ |
|  |  |  |  |
| Acceleration | $\mathrm{a}_{1}=15 \mathrm{~m} / \mathrm{s}^{2}$ |  |  |

## Calculate the load that each carriage exerts

Uniform motion, Radial load $P_{n}$

$$
\begin{aligned}
P_{1} & =\frac{m_{1} g}{4}-\frac{m_{1} g \cdot l_{3}}{2 l_{1}}+\frac{m_{1} g \cdot l_{4}}{2 l_{2}}+\frac{m_{2} g}{4} & P_{3} & =\frac{m_{1} g}{4}+\frac{m_{1} g \cdot l_{3}}{2 l_{1}}-\frac{m_{1} g \cdot l_{4}}{2 l_{2}}+\frac{m_{2} g}{4} \\
& =2562.4 \mathrm{~N} & & =3072.6 \mathrm{~N} \\
P_{2} & =\frac{m_{1} g}{4}+\frac{m_{1} g \cdot l_{3}}{2 l_{1}}+\frac{m_{1} g \cdot l_{4}}{2 l_{2}}+\frac{m_{2} g}{4} & P_{4} & =\frac{m_{1} g}{4}-\frac{m_{1} g \cdot l_{3}}{2 l_{1}}-\frac{m_{1} g \cdot l_{4}}{2 l_{2}}+\frac{m_{2} g}{4} \\
& =3987.2 \mathrm{~N} & & =1647.8 \mathrm{~N}
\end{aligned}
$$

During acceleration to the left, Radial load $P_{n} l a_{l}$

$$
\begin{aligned}
P_{1} l a_{1} & =P_{1}-\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} & P_{3} l a_{1} & =P_{3}+\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} \\
& =-1577 \mathrm{~N} & & =7212 \mathrm{~N} \\
P_{2} l a_{1} & =P_{2}+\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} & P_{4} l a_{1} & =P_{4}-\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} \\
& =8126.6 \mathrm{~N} & & =-2491.6 \mathrm{~N}
\end{aligned}
$$

Lateral load $P t_{n} l a_{1}$

$$
\begin{array}{ll}
P t_{1} l a_{1}=-\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=-484.6 \mathrm{~N} & P t_{3} l a_{1}=\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=484.6 \mathrm{~N} \\
P t_{2} l a_{1}=\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=484.6 \mathrm{~N} & P t_{4} l a_{1}=-\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=-484.6 \mathrm{~N}
\end{array}
$$



Velocity diagram

## During deceleration to the left, Radial load $P_{n} l a_{3}$

$P_{1} l a_{3}=P_{1}+\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}}$
$=3942.2 \mathrm{~N}$
$P_{2} l a_{3}=P_{2}-\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}}$
$=2607.4 \mathrm{~N}$

$$
\begin{aligned}
P_{3} l a_{3} & =P_{3}-\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}} \\
& =1692.8 \mathrm{~N} \\
P_{4} l a_{3} & =P_{4}+\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}} \\
& =3027.6 \mathrm{~N}
\end{aligned}
$$

## Lateral load $P t_{n} l a_{3}$

$P t_{1} l a_{3}=\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=161.5 \mathrm{~N}$
$P t_{3} l a_{3}=-\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=-161.5 \mathrm{~N}$
$P t_{2} l a_{3}=-\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=-161.5 \mathrm{~N}$

$$
P t_{4} l a_{3}=\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=161.5 \mathrm{~N}
$$

During acceleration to the right, Radial load $P_{n} r a_{l}$
$P_{1} r a_{1}=P_{1}+\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}}$

$$
P_{2} r a_{1}=P_{2}-\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}}
$$

$$
=-152.2 \mathrm{~N}
$$

$$
\begin{aligned}
P_{3} r a_{1} & =P_{3}-\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} \\
& =-1066.8 \mathrm{~N} \\
P_{4} r a_{1} & =P_{4}+\frac{m_{1} \cdot a_{1} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{1} \cdot l_{5}}{2 l_{1}} \\
& =5787.2 \mathrm{~N}
\end{aligned}
$$

Lateral load $P t_{n} l a_{3}$

$$
\begin{array}{ll}
P t_{1} r a_{1}=\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=484.6 \mathrm{~N} & P t_{3} r a_{1}=-\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=-484.6 \mathrm{~N} \\
P t_{2} r a_{1}=-\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=-484.6 \mathrm{~N} & P t_{4} r a_{1}=\frac{m_{1} \cdot a_{1} \cdot l_{4}}{2 l_{1}}=484.6 \mathrm{~N}
\end{array}
$$

## During deceleration to the right, Radial load $P_{n} r a_{3}$

$$
\begin{aligned}
P_{1} r a_{3} & =P_{1}-\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}} & P_{3} r a_{3} & =P_{3}+\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}} \\
& =1182.6 \mathrm{~N} & & =4452.4 \mathrm{~N}
\end{aligned}
$$

$$
P_{2} r a_{3}=P_{2}+\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}+\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}}
$$

$$
P_{4} r a_{3}=P_{4}-\frac{m_{1} \cdot a_{3} \cdot l_{6}}{2 l_{1}}-\frac{m_{2} \cdot a_{3} \cdot l_{5}}{2 l_{1}}
$$

$$
=5367 \mathrm{~N}
$$

$$
=268 \mathrm{~N}
$$

## Lateral load $\mathrm{Pt}_{n} r a_{1}$

$$
\begin{array}{ll}
P t_{1} r a_{3}=-\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=-161.5 \mathrm{~N} & P t_{3} r a_{3}=\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=161.5 \mathrm{~N} \\
P t_{2} r a_{3}=\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=161.5 \mathrm{~N} & P t_{4} r a_{3}=-\frac{m_{1} \cdot a_{3} \cdot l_{4}}{2 l_{1}}=-161.5 \mathrm{~N}
\end{array}
$$

## Calculate equivalent load

In uniform motion
$P_{E 1}=P_{1}=2562.4 \mathrm{~N}$
$P_{E 3}=P_{3}=3072.6 \mathrm{~N}$
$P_{E 2}=P_{2}=3987.2 \mathrm{~N}$
$P_{E 4}=P_{4}=1647.8 \mathrm{~N}$

During acceleration to the left
$P_{E 1} l a_{1}=\left|P_{1} l a_{1}\right|+\left|P t_{1} l a_{1}\right|=2061.6 \mathrm{~N}$
$P_{E 3} l a_{1}=\left|P_{3} l a_{1}\right|+\left|P t_{3} l a_{1}\right|=7696.6 \mathrm{~N}$
$P_{E 2} l a_{1}=\left|P_{2} l a_{1}\right|+\left|P t_{2} l a_{1}\right|=8611.2 \mathrm{~N}$
$P_{E 4} l a_{1}=\left|P_{4} l a_{1}\right|+\left|P t_{4} l a_{1}\right|=2976.2 \mathrm{~N}$
During deceleration to the left
$P_{E 1} l a_{3}=\left|P_{1} l a_{3}\right|+\left|P t_{1} l a_{3}\right|=4103.7 \mathrm{~N} \quad P_{E 3} l a_{3}=\left|P_{3} l a_{3}\right|+\left|P t_{3} l a_{3}\right|=1854.3 \mathrm{~N}$
$P_{E 2} l a_{3}=\left|P_{2} l a_{3}\right|+\left|P t_{2} l a_{3}\right|=2768.9 \mathrm{~N} \quad P_{E 4} l a_{3}=\left|P_{4} l a_{3}\right|+\left|P t_{4} l a_{3}\right|=3189.1 \mathrm{~N}$

During acceleration to the right
$P_{E 1} r a_{1}=\left|P_{1} r a_{1}\right|+\left|P t_{1} r a_{1}\right|=7186.4 \mathrm{~N}$
$P_{E 3} r a_{1}=\left|P_{3} r a_{1}\right|+\left|P t_{3} r a_{1}\right|=1551.4 \mathrm{~N}$
$P_{E 2} r a_{1}=\left|P_{2} r a_{1}\right|+\left|P_{2} r a_{1}\right|=636.8 \mathrm{~N}$
$P_{E 4} r a_{1}=\left|P_{4} r a_{1}\right|+\left|P t_{4} r a_{1}\right|=6271.8 \mathrm{~N}$
During deceleration to the right
$P_{E 1} r a_{3}=\left|P_{1} r a_{3}\right|+\left|P t_{1} r a_{3}\right|=1344.1 \mathrm{~N}$
$P_{E 3} r a_{3}=\left|P_{3} r a_{3}\right|+\left|P t_{3} r a_{3}\right|=4613.9 \mathrm{~N}$
$P_{E 2} r a_{3}=\left|P_{2} r a_{3}\right|+\left|P t_{2} r a_{3}\right|=5528.5 \mathrm{~N}$

$$
P_{E 4} r a_{3}=\left|P_{4} r a_{3}\right|+\left|P t_{4} r a_{3}\right|=429.5 \mathrm{~N}
$$

## Calculation of static factor

From above, the maximum load is exerted on carriage No. $2 \quad f_{s}=\frac{C_{O}}{P_{E 2} l a_{1}}=\frac{100.6 \times 10^{3}}{8611.2}=11.7$
when during acceleration of the 2 nd linear guideway to the left.

## Calculate the mean load on each carriage $P_{m n}$

$P_{m 1}=\sqrt[3]{\frac{\left(P_{E 1} l a_{1}^{3} \cdot X_{1}+P_{E 1}^{3} \cdot X_{2}+P_{E 1} l a_{3}^{3} \cdot X_{3}+P_{E 1} r a_{1}^{3} \cdot X_{1}+P_{E 1}^{3} \cdot X_{2}+P_{E 1} r a_{3}^{3} \cdot X_{3}\right)}{2 l_{S}}}=2700.7 \mathrm{~N}$
$P_{m 2}=\sqrt[3]{\frac{\left(P_{E 2} l a_{1}^{3} \cdot X_{1}+P_{E 2}^{3} \cdot X_{2}+P_{E 2} l a_{3}^{3} \cdot X_{3}+P_{E 2} r a_{1}^{3} \cdot X_{1}+P_{E 2}^{3} \cdot X_{2}+P_{E 2} r a_{3}^{3} \cdot X_{3}\right)}{2 l_{S}}}=4077.2 \mathrm{~N}$
$P_{m 3}=\sqrt[3]{\frac{\left(P_{E 3} l a a_{1}^{3} \cdot X_{1}+P_{E 3}^{3} \cdot X_{2}+P_{E 3} l a_{3}^{3} \cdot X_{3}+P_{E 3} r a_{1}^{3} \cdot X_{1}+P_{E 3}^{3} \cdot X_{2}+P_{E 3} r a_{3}^{3} \cdot X_{3}\right)}{2 l_{s}}}=3187.7 \mathrm{~N}$
$P_{m 4}=\sqrt[3]{\frac{\left(P_{E 4} l a_{1}^{3} \cdot X_{1}+P_{E 4}^{3} \cdot X_{2}+P_{E 4} l a_{3}^{3} \cdot X_{3}+P_{E 4} r a_{1}^{3} \cdot X_{1}+P_{E 4}^{3} \cdot X_{2}+P_{E 4} r a_{3}^{3} \cdot X_{3}\right)}{2 l_{S}}}=1872.6 \mathrm{~N}$

## Calculation of nominal life $L_{n}$

Base on the equation of the nominal life, we assume the $f_{W}=1.5$ and the result is as below:
$L_{1}=\left(\frac{C}{f_{W} \cdot P_{m 1}}\right)^{3} \times 50=193500 \mathrm{~km} \quad L_{3}=\left(\frac{C}{f_{W} \cdot P_{m 3}}\right)^{3} \times 50=117700 \mathrm{~km}$
$L_{2}=\left(\frac{C}{f_{W} \cdot P_{m 2}}\right)^{3} \times 50=56231 \mathrm{~km} \quad L_{4}=\left(\frac{C}{f_{W} \cdot P_{m 4}}\right)^{3} \times 50=580400 \mathrm{~km}$
From these calculations and under the operating conditions specified as above, the 56231 km running distance as service life of carriage No. 2 is obtained.

## Accuracy Standard

The accuracy of linear guideway includes the dimensional tolerance of height, width, and the running accuracy of the carriage on the rail. The standard of the dimension difference is built for two or more carriages on a rail or a number of rails are used on the same plane. The accuracy of linear guideway is divided into 5 classes, normal grade (N), high precision (H), precision (P), super precision (SP), and ultra precision (UP).

## Running parallelism

The running accuracy is the deviation of parallelism between the reference surface of carriage and reference surface of rail when carriage moving over the entire length of rail.


## Height difference $(\Delta H)$

The height difference $(\Delta \mathrm{H})$ means the height difference among carriages installed on the same plane.

Width difference ( $\Delta \mathrm{W} 2$ )
The width difference ( $\Delta \mathrm{W} 2$ ) means the width difference among carriages installed on a rail.
Note: When two or more linear guideways are used on the same plane, the tolerance of W2 and difference of $\Delta \mathrm{W} 2$ is applicable to master rail only.
Note: The accuracy is measured at the center or central area of carriage
Note: The rail is smoothly curved so that the required accuracy is easily achieved by pressing the rail to the reference surface of the machine. If it is mounted on a less rigid base such as an aluminum base, the curve of the rail will affect the accuracy of the machine. Therefore, it is necessary to define straightness of the rail in advance.

## The Selection of Accuracy Grade

The accuracy grade for different applications shown as table below.

| Sort | Application | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | H | P | SP | UP |
|  | Machining center |  |  | $\bullet$ | - |  |
|  | Lathe |  |  | - | - |  |
|  | Milling machine |  |  | - | $\bullet$ |  |
|  | Boring machine |  |  | - | - |  |
|  | Jig borer |  |  |  | - | - |
|  | Grinding machine |  |  |  | - | - |
|  | Electric discharge machine |  |  | $\bullet$ | - | $\bullet$ |
|  | Punching press |  | $\bullet$ | $\bullet$ |  |  |
|  | Laser-beam machine |  | - | $\bullet$ | - |  |
|  | Woodworking machine | $\bullet$ | $\bullet$ | - |  |  |
|  | NC drilling machine |  | $\bullet$ | - |  |  |
|  | Tapping center |  | - | - |  |  |
|  | Pallet changer | - |  |  |  |  |
|  | ATC | $\bullet$ |  |  |  |  |
|  | Wire cutter |  |  | $\bullet$ | $\bullet$ |  |
|  | Dresser |  |  |  | - | $\bullet$ |

## Calculation of the Equivalent Load

| Sort | Application | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | N | H | P | SP | UP |
|  | Cartesian coordinate robot | $\bullet$ | - | $\bullet$ |  |  |
|  | Cylindrical coordinate robot | $\bullet$ | - |  |  |  |
|  | Wire bonder |  |  | - | $\bullet$ |  |
|  | Prober |  |  |  | - | $\bullet$ |
|  | Electroniccomponent inserter |  | - | $\bullet$ |  |  |
|  | Printed-circuitboard drilling machine |  | $\bullet$ | $\bullet$ | - |  |
| $\begin{aligned} & \text { n } \\ & \frac{5}{ \pm} \\ & \hline \end{aligned}$ | Injection-molding machine | $\bullet$ | - |  |  |  |
|  | 3D measuring instrument |  |  |  | $\bullet$ | - |
|  | Office equipment | - | - |  |  |  |
|  | Transfer equipment | - | $\bullet$ |  |  |  |
|  | XY table |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
|  | Painting machine | $\bullet$ | $\bullet$ |  |  |  |
|  | Welding machine | $\bullet$ | $\bullet$ |  |  |  |
|  | Medical equipment | - | - |  |  |  |
|  | Digitizer |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
|  | Inspection equipment |  |  | $\bullet$ | $\bullet$ | $\bullet$ |

The rigidity of a linear quideway could be enhanced by increasing the preload. As shown as below figure, the load could be raised up to 2.8 times the preload applied. The preload is represented by negative clearance resulting from the increase of rolling element diameter. Therefore, the preload should be considered in calculation service life.

The Selection of Preload
Selecting proper preload from table below to adapt the specific application and condition.

| Preload grade | Fitted condition | Application examples |
| :---: | :---: | :---: |
| Clearance (FZ) | - The loading direction is fixed, vibration and impact are light, and two axes are applied in parallel. <br> - High precision is not required, and the low frictional resistance is need. | Semiconductor facilities, medical equipment, stage systems, press machine, welding machine, industrial robot, and other small sliding systems. |
| Light preload (FC) | - The loading direction is fixed, vibration and impact are light, and two axes are applied in parallel. <br> - High precision is not required, and the low frictional resistance is needed. | Welding machine, binding machine, auto packing machine, XY axis of ordinary industrial machine, material handling equipments. |
| Medium preload (FO) | - Overhang application with a moment load. <br> - Applied in one-axis configuration <br> - The need of light preload and high precision. | $Z$ axis of industrial machines, EDM, precision XY table, PC board drilling machine, industrial robot, NC lathe, measuring equipment, grinding machine, auto painting machine. |
| Heavy preload (F1) | - Machine is subjected to vibration and impact, and high rigidity required. <br> - Application of heavy load or heavy cutting. | Machine center, NC lathe, grinding machine, milling machine, Z axis of boring machine and machine tools. |
| Ultra heavy preload (F2) | - Machine is subjected to vibration and impact, and high rigidity required. <br> - Application of heavy load or heavy cutting. | Machine center, NC lathe, grinding machine, milling machine, Z axis of boring machine and machine tools. |

Linear Guideway
Introduction of Each Series

## Construction



## Characteristics

The trains of balls are designed to a contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSA series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.
The design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## High Rigidity, Four-way Equal Load

The four trains of balls are allocated to a circular contact angle at $45^{\circ}$, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

## Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

## Self Alignment Capability

The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

## Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

## Carriage Type

Heavy Load


Installed from top side of carriage with the thread length longer than MSA-E type.


This type offers the installation either from top or bottom side of carriage.


Square type with smaller width and can be installed from top side of carriage.

## Ultra Heavy Load



All dimensions are same as MSA-A except the length is longer, which makes it more rigid.


All dimensions are same as MSA-S except the length is longer, which makes it more rigid.

## Rail Type

Counter Bore (R type)


Tapped Hole (T type)


All dimensions are same as MSA-E except the length is longer, which makes it more rigid.


## Description of Specification

Non-Interchangeable Type



Interchangeable Type
Code of Carriage

Series : MSA
Size : 15, 20, 25, 30, 35, 45, 55, 65

Carriage type : Heavy load
A : Flange type, mounting from top
E : Flange type, mounting either from top or bottom
S:Square type
Ultra heavy load
LA : Flange type, mounting from top
LE : Flange type, mounting either from top or bottom LS: Square type
Dust protection option of carriage :
No symbol, UU, SS, ZZ, DD, KK, LL, RR, HD (refer to Dust Proof [B1-242])
Preload: FC (Light preload), F0 (Medium preload) , F1 (Heavy preload) We don't provide F1(Heavy preload) to MSA15

Accuracy grade: N, H, P
Code of special carriage : No symbol, A, B, ...

Code of Rail


## Accuracy Grade



Table 1 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | $\mathbf{N}$ | $\mathbf{H}$ | $\mathbf{P}$ | SP | UP |  |
| 0 | 315 | 9 | 6 | 3 | 2 | 1.5 |  |
| 315 | 400 | 11 | 8 | 4 | 2 | 1.5 |  |
| 400 | 500 | 13 | 9 | 5 | 2 | 1.5 |  |
| 500 | 630 | 16 | 11 | 6 | 2.5 | 1.5 |  |
| 630 | 800 | 18 | 12 | 7 | 3 | 2 |  |
| 800 | 1000 | 20 | 14 | 8 | 4 | 2 |  |
| 1000 | 1250 | 22 | 16 | 10 | 5 | 2.5 |  |
| 1250 | 1600 | 25 | 18 | 11 | 6 | 3 |  |
| 1600 | 2000 | 28 | 20 | 13 | 7 | 3.5 |  |
| 2000 | 2500 | 30 | 22 | 15 | 8 | 4 |  |
| 2500 | 3000 | 32 | 24 | 16 | 9 | 4.5 |  |
| 3000 | 3500 | 33 | 25 | 17 | 11 | 5 |  |
| 3500 | 4000 | 34 | 26 | 18 | 12 | 6 |  |
|  |  |  |  |  |  |  |  |

Non-Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High <br> H | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} \hline 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 1) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.01 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |  |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 1) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |  |  |
| 65 | Tolerance for height H | $\pm 0.1$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \end{gathered}$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.025 | 0.015 | 0.01 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |  |  |

## Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} \hline 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface B | $\Delta \mathrm{D}$ (see the Table 1) |  |  |
| 65 | Tolerance for height H | $\pm 0.1$ | $\pm 0.07$ | $\begin{gathered} 0 \\ -0.07 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.02 | 0.01 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.025 | 0.015 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Heavy preload (F1) |
| MSA15 | 0~0.02C | 0.03~0.05C | - |
| MSA20 |  |  | 0.05~0.08C |
| MSA25 |  |  |  |
| MSA30 |  |  |  |
| MSA35 |  |  |  |
| MSA45 |  |  |  |
| MSA55 |  |  |  |
| MSA65 |  |  |  |
| MSA20L | 0~0.02C | 0.03~0.05C | 0.05~0.08C |
| MSA25L |  |  |  |
| MSA30L |  |  |  |
| MSA35L |  |  |  |
| MSA45L |  |  |  |
| MSA55L |  |  |  |
| MSA65L |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation

MSA series


Unit:mm

| Model No. | $\begin{gathered} \mathrm{r}_{1} \\ (\text { max. }) \end{gathered}$ | $\begin{gathered} \mathbf{r}_{2} \\ \left(\text { max. }_{\text {a }}\right) \end{gathered}$ | $\mathrm{h}_{1}$ | $\mathrm{h}_{2}$ | $\mathrm{H}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 0.5 | 0.5 | 3 | 4 | 4.2 |
| 20 | 0.5 | 0.5 | 3.5 | 5 | 5 |
| 25 | 1 | 1 | 5 | 5 | 6.5 |
| 30 | 1 | 1 | 5 | 5 | 8 |
| 35 | 1 | 1 | 6 | 6 | 9.5 |
| 45 | 1 | 1 | 8 | 8 | 10 |
| 55 | 1.5 | 1.5 | 10 | 10 | 13 |
| 65 | 1.5 | 1.5 | 10 | 10 | 15 |

## Dimensional Tolerance of Mounting Surface

With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $\mathrm{e}_{1}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| 15 | 25 | 18 | - |
| 20 | 25 | 20 | 18 |
| 25 | 30 | 22 | 20 |
| 30 | 40 | 30 | 27 |
| 35 | 50 | 35 | 30 |
| 45 | 60 | 40 | 35 |
| 55 | 70 | 50 | 45 |
| 65 | 80 | 60 | 55 |

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| $\mathbf{1 5}$ | 130 | 85 | - |
| 20 | 130 | 85 | 50 |
| 25 | 130 | 85 | 70 |
| 30 | 170 | 110 | 90 |
| 35 | 210 | 150 | 120 |
| 45 | 250 | 170 | 140 |
| 55 | 300 | 210 | 170 |
| 65 | 350 | 250 | 200 |

Note: The permissible values in table are applicable when the span is 500 mm wide.

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ :Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )
Unit: $m m$

| Model No. | Standard Pitch <br> (P) | Standard ( $\mathrm{E}_{\text {std. }}$ ) | Minimum ( $\mathrm{E}_{\text {min }}$ ) | Max ( $L_{0}$ max. ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| MSA 15 | 60 | 20 | 5 | 4000 |
| MSA 20 | 60 | 20 | 6 | 4000 |
| MSA 25 | 60 | 20 | 7 | 4000 |
| MSA 30 | 80 | 20 | 8 | 4000 |
| MSA 35 | 80 | 20 | 8 | 4000 |
| MSA 45 | 105 | 22.5 | 11 | 4000 |
| MSA 55 | 120 | 30 | 13 | 4000 |
| MSA 65 | 150 | 35 | 14 | 4000 |

## Tapped Hole Rail Dimensions



| Rail Model | S | h(mm) |
| :---: | :---: | :---: |
| MSA 15 T | M5 | 8 |
| MSA 20 T | M6 | 10 |
| MSA 25 T | M6 | 12 |
| MSA 30 T | M8 | 15 |
| MSA 35 T | M8 | 17 |
| MSA 45 T | M12 | 24 |
| MSA 55 T | M14 | 24 |
| MSA 65 T | M20 | 30 |




Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \text { H } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Width } \\ \mathrm{w} \end{gathered}$ | $\begin{gathered} \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $5 \times 1$ | $\mathrm{L}_{1}$ | T | $\mathrm{T}_{1}$ | N | G | K | $\mathrm{d}_{1}$ | Grease <br> Nipple |
| MSA 15 A | 24 | 47 | 56.3 | 16 | 4.2 | 38 | 30 | M5×11 | 39.3 | 7 | 11 | 4.3 | 7 | 5.4 | 3.3 | G-M4 |
| $\begin{aligned} & \text { MSA } 20 \text { A } \\ & \text { MSA } 20 \text { LA } \end{aligned}$ | 30 | 63 | $\begin{aligned} & 72.9 \\ & 88.8 \end{aligned}$ | 21.5 | 5 | 53 | 40 | M6×10 | $\begin{aligned} & 51.3 \\ & 67.2 \end{aligned}$ | 7 | 10 | 5 | 12 | 5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 25 \text { A } \\ & \text { MSA } 25 \text { LA } \end{aligned}$ | 36 | 70 | $\begin{gathered} 81.6 \\ 100.6 \end{gathered}$ | 23.5 | 6.5 | 57 | 45 | M8×16 | $\begin{aligned} & 59 \\ & 78 \\ & \hline \end{aligned}$ | 11 | 16 | 6 | 12 | 5.5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 30 \text { A } \\ & \text { MSA } 30 \text { LA } \end{aligned}$ | 42 | 90 | $\begin{gathered} 97 \\ 119.2 \end{gathered}$ | 31 | 8 | 72 | 52 | M10×18 | $\begin{array}{r} 71.4 \\ 93.6 \\ \hline \end{array}$ | 11 | 18 | 7 | 12 | 6 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 35 \text { A } \\ & \text { MSA } 35 \text { LA } \end{aligned}$ | 48 | 100 | $\begin{aligned} & 111.2 \\ & 136.6 \end{aligned}$ | 33 | 9.5 | 82 | 62 | M10×21 | $\begin{gathered} 81 \\ 106.4 \end{gathered}$ | 13 | 21 | 8 | 11.5 | 6.5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 45 \text { A } \\ & \text { MSA } 45 \text { LA } \end{aligned}$ | 60 | 120 | $\begin{aligned} & 137.7 \\ & 169.5 \end{aligned}$ | 37.5 | 10 | 100 | 80 | M12×25 | $\begin{aligned} & 102.5 \\ & 134.3 \end{aligned}$ | 13 | 25 | 10 | 13.5 | 7 | 3.3 | G-PT1/8 |

Note: Request for size 55 and 65 MSA-A / MSA-LA carriage, please refer to MSA-E / MSA-LE carriage type.
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width W | Length | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $\mathrm{L}_{1}$ | T | T | $\mathrm{T}_{2}$ | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| MSA 15 E | 24 | 47 | 56.3 | 16 | 4.2 | 38 | 30 | M5×7 | 39.3 | 7 | 11 | 7 | 4.3 | 7 | 5.4 | 3.3 | G-M4 |
| MSA 20 E <br> MSA 20 LE <br> MSA 20 TE | 30 | 63 | $\begin{aligned} & 72.9 \\ & 88.8 \\ & 51.1 \end{aligned}$ | 21.5 | 5 | 53 | $\begin{aligned} & 40 \\ & 40 \end{aligned}$ | M6×10 | $\begin{aligned} & 51.3 \\ & 67.2 \\ & 29.5 \\ & \hline \end{aligned}$ | 7 | 10 | 10 | 5 | 12 | 5 | 3.3 | G-M6 |
| MSA 25 E MSA 25 LE | 36 | 70 | $\begin{gathered} 81.6 \\ 100.6 \end{gathered}$ | 23.5 | 6.5 | 57 | 45 | M8×10 | $\begin{aligned} & 59 \\ & 78 \\ & \hline \end{aligned}$ | 11 | 16 | 10 | 6 | 12 | 5.5 | 3.3 | G-M6 |
| MSA 30 E MSA 30 LE | 42 | 90 | $\begin{gathered} 97 \\ 119.2 \end{gathered}$ | 31 | 8 | 72 | 52 | M10×10 | $\begin{aligned} & 71.4 \\ & 93.6 \\ & \hline \end{aligned}$ | 11 | 18 | 10 | 7 | 12 | 6 | 3.3 | G-M6 |
| MSA 35 E MSA 35 LE | 48 | 100 | $\begin{aligned} & 111.2 \\ & 136.6 \end{aligned}$ | 33 | 9.5 | 82 | 62 | M10×13 | $\begin{gathered} 81 \\ 106.4 \end{gathered}$ | 13 | 21 | 13 | 8 | 11.5 | 6.5 | 3.3 | G-M6 |
| MSA 45 E MSA 45 LE | 60 | 120 | $\begin{aligned} & 137.7 \\ & 169.5 \end{aligned}$ | 37.5 | 10 | 100 | 80 | M12×15 | $\begin{aligned} & 102.5 \\ & 134.3 \end{aligned}$ | 13 | 25 | 15 | 10 | 13.5 | 7 | 3.3 | G-PT 1/8 |
| MSA 55 E MSA 55 LE | 70 | 140 | $\begin{aligned} & 162.1 \\ & 200.1 \\ & \hline \end{aligned}$ | 43.5 | 13 | 116 | 95 | M14×17 | $\begin{aligned} & 119.5 \\ & 157.5 \end{aligned}$ | 19 | 32 | 17 | 11 | 13.5 | 12.4 | 3.3 | G-PT 1/8 |
| MSA 65 E MSA 65 LE | 90 | 170 | $\begin{aligned} & 198.6 \\ & 252.6 \end{aligned}$ | 53.5 | 15 | 142 | 110 | M16×23 | $\begin{aligned} & 149 \\ & 203 \end{aligned}$ | 21.5 | 37.5 | 23 | 19 | 13.5 | 15.9 | 3.3 | G-PT 1/8 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other


Unit: mm

|  | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | $\underset{\text { Height }}{\text { H }}$ | Width w | Length | $\mathrm{w}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $\mathrm{L}_{1}$ | T | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| MSA 15 S | 28 | 34 | 56.3 | 9.5 | 4.2 | 26 | 26 | M4×5 | 39.3 | 7.2 | 8.3 | 7 | 5.4 | 3.3 | G-M4 |
| $\begin{aligned} & \text { MSA } 20 \text { S } \\ & \text { MSA } 20 \text { LS } \end{aligned}$ | 30 | 44 | $\begin{aligned} & 72.9 \\ & 88.8 \end{aligned}$ | 12 | 5 | 32 | $\begin{aligned} & 36 \\ & 50 \end{aligned}$ | M5 $\times 6$ | $\begin{aligned} & 51.3 \\ & 67.2 \end{aligned}$ | 8 | 5 | 12 | 5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 25 \text { S } \\ & \text { MSA } 25 \text { LS } \end{aligned}$ | 40 | 48 | $\begin{gathered} 81.6 \\ 100.6 \\ \hline \end{gathered}$ | 12.5 | 6.5 | 35 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M6×8 | $\begin{aligned} & 59 \\ & 78 \end{aligned}$ | 10 | 10 | 12 | 5.5 | 3.3 | G-M6 |
| MSA 30 S MSA 30 LS | 45 | 60 | $\begin{gathered} 97 \\ 119.2 \end{gathered}$ | 16 | 8 | 40 | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | M8×10 | $\begin{aligned} & 71.4 \\ & 93.6 \end{aligned}$ | 11.7 | 10 | 12 | 6 | 3.3 | G-M6 |
| MSA 35 S MSA 35 LS | 55 | 70 | $\begin{aligned} & 111.2 \\ & 136.6 \\ & \hline \end{aligned}$ | 18 | 9.5 | 50 | $\begin{aligned} & 50 \\ & 72 \\ & \hline \end{aligned}$ | M8×12 | $\begin{gathered} 81 \\ 106.4 \end{gathered}$ | 12.7 | 15 | 11.5 | 6.5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSA } 45 \text { S } \\ & \text { MSA } 45 \text { LS } \end{aligned}$ | 70 | 86 | $\begin{aligned} & 137.7 \\ & 169.5 \end{aligned}$ | $20.5$ | 10 | 60 | $\begin{aligned} & 60 \\ & 80 \end{aligned}$ | M10×17 | $\begin{aligned} & 102.5 \\ & 134.3 \end{aligned}$ | 16 | 20 | 13.5 | 7 | 3.3 | G-PT 1/8 |
| MSA 55 S MSA 55 LS | 80 | 100 | $\begin{aligned} & 162.1 \\ & 200.1 \end{aligned}$ | 23.5 | 13 | 75 | $\begin{aligned} & 75 \\ & 95 \end{aligned}$ | M12×18 | $\begin{aligned} & 119.5 \\ & 157.5 \\ & \hline \end{aligned}$ | 18 | 21 | 13.5 | 12.4 | 3.3 | G-PT 1/8 |
| $\begin{aligned} & \text { MSA } 65 \text { S } \\ & \text { MSA } 65 \text { L.S } \end{aligned}$ | 90 | 126 | $\begin{aligned} & 198.6 \\ & 252.6 \end{aligned}$ | $31.5$ | 15 | 76 | $\begin{gathered} 70 \\ 120 \end{gathered}$ | M16×20 | $\begin{aligned} & 149 \\ & 203 \end{aligned}$ | 23 | 19 | 13.5 | 15.9 | 3.3 | G-PT 1/8 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other


| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width W | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{array}{\|c\|} \hline \text { Pitch } \\ \text { P } \end{array}$ | $\begin{array}{\|c\|} \hline \mathrm{E} \\ \text { std. } \end{array}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | Dynamic <br> c <br> kN | Static C。 kN | $\begin{gathered} M_{p} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} \mathrm{M}_{\mathrm{Y}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{R} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | Carriage <br> kg | $\begin{gathered} \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{gathered}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double* |  |  |  |
| MSA 15 S | 15 | 15 | 60 | 20 | $7.5 \times 5.3 \times 4.5$ | 11.8 | 18.9 | 0.12 | 0.68 | 0.12 | 0.68 | 0.14 | 0.18 | 1.5 |
| MSA 20 S MSA 20 LS | 20 | 18 | 60 | 20 | $9.5 \times 8.5 \times 6$ | $19.2$ | $\begin{aligned} & 29.5 \\ & 39.3 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 2.23 \end{aligned}$ | $\begin{aligned} & 0.23 \\ & 0.39 \end{aligned}$ | $\begin{aligned} & 1.42 \\ & 2.23 \end{aligned}$ | $\begin{aligned} & 0.29 \\ & 0.38 \end{aligned}$ | $\begin{gathered} 0.3 \\ 0.39 \end{gathered}$ | 2.4 |
| MSA 25 S MSA 25 LS | 23 | 22 | 60 | 20 | $11 \times 9 \times 7$ | $\begin{aligned} & 28.1 \\ & 34.4 \\ & \hline \end{aligned}$ | $\begin{aligned} & 42.4 \\ & 56.6 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.67 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.20 \\ & 3.52 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.67 \end{aligned}$ | $\begin{aligned} & 2.20 \\ & 3.52 \end{aligned}$ | $\begin{aligned} & 0.48 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.68 \\ & \hline \end{aligned}$ | 3.4 |
| $\begin{aligned} & \text { MSA } 30 \mathrm{~S} \\ & \text { MSA } 30 \text { LS } \end{aligned}$ | 28 | 26 | 80 | 20 | $14 \times 12 \times 9$ | $\begin{aligned} & 39.2 \\ & 47.9 \end{aligned}$ | $\begin{aligned} & \hline 57.8 \\ & 77.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 3.67 \\ & 5.81 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 3.67 \\ & 5.81 \end{aligned}$ | $\begin{aligned} & \hline 0.79 \\ & 1.05 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.86 \\ & 1.12 \end{aligned}$ | 4.8 |
| $\begin{aligned} & \text { MSA } 35 \text { S } \\ & \text { MSA } 35 \text { LS } \end{aligned}$ | 34 | 29 | 80 | 20 | $14 \times 12 \times 9$ | $\begin{aligned} & 52.0 \\ & 63.6 \end{aligned}$ | $\begin{gathered} \hline 75.5 \\ 100.6 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 0.93 \\ & 1.60 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.47 \\ & 8.67 \end{aligned}$ | $\begin{aligned} & 0.93 \\ & 1.60 \\ & \hline \end{aligned}$ | $\begin{aligned} & 5.47 \\ & 8.67 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 1.67 \\ & \hline \end{aligned}$ | $\begin{gathered} 1.45 \\ 1.9 \\ \hline \end{gathered}$ | 6.6 |
| $\begin{aligned} & \text { MSA } 45 \mathrm{~S} \\ & \text { MSA } 45 \mathrm{LS} \\ & \hline \end{aligned}$ | 45 | 38 | 105 | 22.5 | $20 \times 17 \times 14$ | $\begin{gathered} \hline 83.8 \\ 102.4 \\ \hline \end{gathered}$ | $\begin{aligned} & 117.9 \\ & 157.3 \end{aligned}$ | $\begin{aligned} & 1.81 \\ & 3.13 \end{aligned}$ | $\begin{aligned} & 10.67 \\ & 16.95 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 1.81 \\ & 3.13 \\ & \hline \end{aligned}$ | $\begin{aligned} & 10.67 \\ & 16.95 \end{aligned}$ | $\begin{aligned} & 2.57 \\ & 3.43 \end{aligned}$ | $\begin{gathered} 2.83 \\ 3.7 \end{gathered}$ | 11. |
| $\begin{aligned} & \text { MSA } 55 \text { S } \\ & \text { MSA } 55 \text { LS } \end{aligned}$ | 53 | 44 | 120 | 30 | $23 \times 20 \times 16$ | $\begin{aligned} & 123.6 \\ & 151.1 \end{aligned}$ | $\begin{aligned} & 169.8 \\ & 226.4 \end{aligned}$ | $\begin{aligned} & 3.13 \\ & 5.40 \end{aligned}$ | $\begin{aligned} & 17.57 \\ & 28.11 \end{aligned}$ | $\begin{aligned} & 3.13 \\ & 5.40 \end{aligned}$ | $\begin{aligned} & 17.57 \\ & 28.11 \end{aligned}$ | $\begin{aligned} & 4.50 \\ & 6.00 \end{aligned}$ | $\begin{aligned} & 4.12 \\ & 4.91 \end{aligned}$ | 15.5 |
| $\begin{aligned} & \text { MSA } 65 \text { S } \\ & \text { MSA } 65 \text { LS } \\ & \hline \end{aligned}$ | 63 | 53 | 150 | 35 | $26 \times 22 \times 18$ | $\begin{aligned} & 198.8 \\ & 253.5 \\ & \hline \end{aligned}$ | $\begin{aligned} & 265.3 \\ & 3759 \end{aligned}$ | $\begin{gathered} 6.11 \\ 11.84 \\ \hline \end{gathered}$ | $\begin{array}{r} 33.71 \\ +57.32 \\ \hline \end{array}$ | $\begin{gathered} 6.11 \\ 11.84 \\ \hline \end{gathered}$ | $\begin{array}{r} 33.71 \\ +57.32 \\ \hline \end{array}$ | $\begin{gathered} 8.36 \\ 11.84 \\ \hline \end{gathered}$ | $\begin{array}{r} 6.43 \\ 8.76 \\ \hline \end{array}$ | 21.9 |

## Compact Type, MSB Series

## Construction



## Characteristics

The trains of balls are designed to a contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSB series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.

The design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## Compact, Four-way Equal Load

Compact design of the carriage with the four trains of balls are allocated to a circular contact angle at $45^{\circ}$, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

## Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

## Self Alignment Capability

The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

## Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.


This type offers the installation either from top or bottom side of carriage.

Heavy Load


All dimensions are same as MSB-TE except the length is longer, which makes it more rigid.


Square type with smaller width and can be installed from top side of carriage.


All dimensions are same as MSB-TS except the length is longer, which makes it more rigid.

Ultra Heavy Load


All dimensions are same as MSB-E except the length is longer, which makes it more rigid.


All dimensions are same as MSB-S except the length is longer, which makes it more rigid.

Rail Type


## Description of Specification

Non-Interchangeable Type


Note ${ }^{*}: ~ U$ type rail is only applicable for MSB15 with M4 mounting hole.


Interchangeable Type
Code of Carriage


Dust protection option of carriage

No symbol, UU, SS, ZZ, DD, KK, LL, RR, HD (refer to Dust Proof [B1-242])
Preload : FC (Light preload) , F0 (Medium preload) ,F1(Heavy preload)
We don't provide F1 (Heavy preload) to MSB15

Code of special carriage : No symbol, A, B, ...


## Accuracy Grade



Table 2 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | $\mathbf{N}$ | $\mathbf{H}$ | $\mathbf{P}$ | SP | UP |
| 0 | 315 | 9 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 11 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 13 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 16 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 18 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 20 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 22 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 25 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 28 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 30 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 32 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 33 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 34 | 26 | 18 | 12 | 6 |

Non-Interchangeable Type

|  |  | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | Item | Normal N | High H | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Difference in distance $W_{2}\left(\Delta W_{2}\right)$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 2) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Difference in distance $W_{2}\left(\Delta W_{2}\right)$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 2) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |  |  |
| 45 | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 1) |  |  |  |  |
|  | Running parallelism of surface D with surface B | $\Delta \mathrm{D}$ (see the Table 1) |  |  |  |  |

## Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High | $\begin{gathered} \text { Precision } \\ \mathrm{P} \end{gathered}$ |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |
| 45 | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface D with surface B | $\Delta \mathrm{D}$ (see the Table 1) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Heavy preload (F1) |
| MSB15T | 0~0.02C | 0.03~0.05C | - |
| MSB20T |  |  | 0.05~0.08C |
| MSB25T |  |  |  |
| MSB30T |  |  |  |
| MSB15 | 0~0.02C | 0.03~0.05C | 0.05~0.08C |
| MSB20 |  |  |  |
| MSB25 |  |  |  |
| MSB30 |  |  |  |
| MSB35 |  |  |  |
| MSB35L |  |  |  |
| MSB45 |  |  |  |
| MSB45L |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation

| Model |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | $r_{1}$ <br> (max.) | $r_{2}$ <br> (max.) | $h_{1}$ | $h_{2}$ | $H_{2}$ |
| $\mathbf{1 5}$ | 0.5 | 0.5 | 3 | 4 | 4.5 |
| $\mathbf{2 0}$ | 0.5 | 0.5 | 4 | 5 | 6 |
| $\mathbf{2 5}$ | 1 | 1 | 5 | 5 | 7 |
| $\mathbf{3 0}$ | 1 | 1 | 7 | 5 | 9.5 |
| $\mathbf{3 5}$ | 1 | 1 | 8 | 6 | 9.5 |
| $\mathbf{4 5}$ | 1 | 1 | 8 | 8 | 10 |

## Dimensional Tolerance of Mounting Surface

With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $\mathrm{e}_{1}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |  |
| 15 | 25 | 18 | - |  |
| 20 | 25 | 20 | 18 |  |
| 25 | 30 | 22 | 20 |  |
| 30 | 40 | 30 | 27 |  |
| 35 | 50 | 35 | 30 |  |
| 45 | 60 | 40 | 35 |  |

Level difference between two axes ( $\mathrm{e}_{2}$ )


| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| $\mathbf{1 5}$ | 130 | 85 | - |
| $\mathbf{2 0}$ | 130 | 85 | 50 |
| $\mathbf{2 5}$ | 130 | 85 | 70 |
| $\mathbf{3 0}$ | 170 | 110 | 90 |
| $\mathbf{3 5}$ | 210 | 150 | 120 |
| $\mathbf{4 5}$ | 250 | 170 | 140 |

Note: The permissible values in table are applicable when the span is 500 mm wide.

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ :Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )

| Model No. | Standard Pitch <br> $(P)$ | Standard ( $\left.\mathrm{E}_{\text {std }}\right)$ | Minimum ( $\left.\mathrm{E}_{\text {min }}\right)$ | Max ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| MSB 15 | 60 | 20 | 5 | 4000 |
| MSB 20 | 60 | 20 | 6 | 4000 |
| MSB 25 | 60 | 20 | 7 | 4000 |
| MSB 30 | 80 | 20 | 7 | 4000 |
| MSB 35 | 80 | 20 | 8 | 4000 |
| MSB 45 | 105 | 22.5 | 11 | 4000 |

## Tapped Hole Rail Dimensions



| Rail Model | S | $h(\mathrm{~mm})$ |
| :---: | :---: | :---: |
| MSB 15 T | M5 | 7 |
| MSB 20 T | M6 | 9 |
| MSB 25 T | M6 | 10 |
| MSB 30 T | M8 | 14 |
| MSB 35 T | M8 | 16 |
| MSB 45 T | M12 | 24 |

## Dimensions of MSB-TE / MSB-E


${ }^{\mathrm{M}_{\mathrm{R}}}$



Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width W | Length L | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $L_{1}$ | T | T ${ }_{1}$ | N | G | K | $\mathrm{d}_{1}$ | Grease <br> Nipple |
| $\begin{aligned} & \text { MSB } 15 \mathrm{TE} \\ & \text { MSB } 15 \mathrm{E} \end{aligned}$ | 24 | 52 | $\begin{aligned} & 40.2 \\ & 57.2 \end{aligned}$ | 18.5 | 4.5 | 41 | $26$ | M5×7 | $\begin{aligned} & 23.5 \\ & 40.5 \end{aligned}$ | 5 | 7 | 6 | 5.5 | 3.2 | 3.3 | G-M4 |
| $\begin{aligned} & \text { MSB } 20 \mathrm{TE} \\ & \text { MSB } 20 \mathrm{E} \\ & \hline \end{aligned}$ | 28 | 59 | $\begin{aligned} & 48 \\ & 67 \end{aligned}$ | 19.5 | 6 | 49 | $32$ | M6×9 | $\begin{aligned} & 29 \\ & 48 \end{aligned}$ | 5 | 9 | 5.5 | 12 | 3.6 | 3.3 | G-M6 |
| MSB 25 TE MSB 25 E | 33 | 73 | $\begin{gathered} 60.2 \\ 82 \end{gathered}$ | 25 | 7 | 60 | $35$ | M8×10 | $\begin{aligned} & 38.7 \\ & 60.5 \end{aligned}$ | 7 | 10 | 6 | 12 | 4.5 | 3.3 | G-M6 |
| MSB 30 TE MSB 30 E | 42 | 90 | $\begin{gathered} 68 \\ 96.7 \end{gathered}$ | 31 | 9.5 | 72 | 40 | M10×10 | $\begin{gathered} 43.3 \\ 72 \end{gathered}$ | 7 | 10 | 8 | 12 | 6 | 3.3 | G-M6 |
| MSB 35 TE MSB 35 E MSB 35 LE | 48 | 100 | $\begin{gathered} 78 \\ 112 \\ 137.5 \end{gathered}$ | 33 | 9.5 | 82 | $\begin{gathered} - \\ 50 \\ 62 \end{gathered}$ | M10×13 | $\begin{gathered} 46 \\ 80 \\ 105.5 \end{gathered}$ | 9 | 13 | 8.5 | 12 | 6.2 | 3.3 | G-M6 |

Note: Rail mounting holes for $\mathrm{M} 3(6 \times 4.5 \times 3.5)$ and $\mathrm{M} 4(7.5 \times 5.3 \times 4.5)$ are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other

## Dimensions of MSB-TS / MSB-S



Unit: mm

|  | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | $\begin{aligned} & \text { Height } \\ & \hline \end{aligned}$ | Width w | $\underset{\mathrm{L}}{\mathrm{~L}} \mathrm{~L}^{\text {Length }}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times \ell$ | $L_{1}$ | T | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| $\begin{aligned} & \text { MSB } 15 \text { TS } \\ & \text { MSB } 15 \text { S } \end{aligned}$ | 24 | 34 | $\begin{aligned} & 40.2 \\ & 57.2 \\ & \hline \end{aligned}$ | 9.5 | 4.5 | 26 | $26$ | M4×6 | $\begin{aligned} & 23.5 \\ & 40.5 \end{aligned}$ | 6 | 6 | 5.5 | 3.2 | 3.3 | G-M4 |
| $\begin{aligned} & \text { MSB } 20 \text { TS } \\ & \text { MSB } 20 \text { S } \\ & \hline \end{aligned}$ | 28 | 42 | $\begin{aligned} & 48 \\ & 67 \end{aligned}$ | 11 | 6 | 32 | $32$ | M5×7 | $\begin{aligned} & 29 \\ & 48 \end{aligned}$ | 6 | 5.5 | 12 | 3.6 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSB } 25 \text { TS } \\ & \text { MSB } 25 \text { S } \end{aligned}$ | 33 | 48 | $\begin{gathered} 60.2 \\ 82 \end{gathered}$ | 12.5 | 7 | 35 | $35$ | M6×9 | $\begin{aligned} & 38.7 \\ & 60.5 \end{aligned}$ | 8 | 6 | 12 | 4.5 | 3.3 | G-M6 |
| $\begin{aligned} & \text { MSB } 30 \text { TS } \\ & \text { MSB } 30 \text { S } \end{aligned}$ | 42 | 60 | $\begin{gathered} 68.7 \\ 96.7 \end{gathered}$ | 16 | 9.5 | 40 | 40 | M8×12 | $\begin{gathered} 43.3 \\ 72 \\ \hline \end{gathered}$ | 8 | 8 | 12 | 6 | 3.3 | G-M6 |
| MSB 35 TS MSB 35 S MSB 35 LS | 48 | 70 | $\begin{gathered} 78 \\ 112 \\ 137.5 \\ \hline \end{gathered}$ | 18 | 9.5 | 50 | $\begin{aligned} & 50 \\ & 50 \\ & \hline \end{aligned}$ | M8×12 | $\begin{gathered} 46 \\ 80 \\ 105.5 \\ \hline \end{gathered}$ | 12.5 | 8.5 | 11.5 | 6.2 | 3.3 | G-M6 |
| MSB 45 S <br> MSB 45 LS | 60 | 86 | $\begin{aligned} & 138.3 \\ & 170.1 \end{aligned}$ | 20.5 | 10 | 60 | $\begin{aligned} & 60 \\ & 80 \end{aligned}$ | M10×17 | $\begin{aligned} & 102.5 \\ & 134.3 \end{aligned}$ | 14.5 | 10 | 13.5 | 7 | 3.3 | G-PT 1/8 |

Note: Rail mounting holes for $M 3(6 \times 4.5 \times 3.5)$ and $M 4(7.5 \times 5.3 \times 4.5)$ are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other


| Model No . | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width $W_{1}$ | Height$\mathrm{H}_{1}$ | $t \stackrel{\text { Pitch }}{\mathrm{P}}$ | $\underset{\text { std. }}{\mathrm{E}}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | $\begin{gathered} \text { Dynamic } \\ \text { C } \\ \mathrm{kN} \end{gathered}$ | $\begin{array}{\|c} \hline \text { Static } \\ \mathrm{C}_{\mathrm{o}} \\ \mathrm{kN} \end{array}$ | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{\mathrm{R}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | $\begin{gathered} \text { Carriage } \\ \mathrm{kg} \end{gathered}$ | $\begin{gathered} \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{gathered}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double* |  |  |  |
| MSB 15 TS | 15 | 12.5 | 60 | 20 | $\begin{gathered} 6 \times 4.5 \times 3.5 \\ (7.5 \times 5.3 \times 4.5) \\ \hline \end{gathered}$ | 6.7 | 9.6 | 0.04 | 0.26 | 0.04 | 0.26 | 0.07 | 0.09 | 1.2 |
| MSB 15 S |  |  |  |  |  | 10.0 | 16.9 | 0.10 | 0.61 | 0.10 | 0.61 | 0.13 | 0.16 |  |
| SB 20 TS | 20 | 15 | 60 | 20 | $9.5 \times 8.5 \times 6$ | 9.7 | 14.2 | 0.07 | 0.44 | 0.07 | 0.44 | 0.14 | 0.16 |  |
| MSB 20 S |  |  |  |  |  | 13.9 | 23.6 | 0.18 | 0.97 | 0.18 | 0.97 | 0.24 | 0.26 |  |
| SB 25 TS | 23 | 18 | 60 | 20 | $11 \times 9 \times 7$ | 15.6 | 22.1 | 0.13 | 0.91 | 0.13 | 0.91 | 0.26 | 0.29 |  |
| MSB 25 S |  |  |  |  |  | 22.3 | 36.9 | 0.35 | 1.87 | 0.35 | 1.87 | 0.43 | 0.45 |  |
| MSB 30 TS | 28 | 23 | 80 | 20 | $11 \times 9 \times 7$ | 23.1 | 31.8 | 0.23 | 1.39 | 0.23 | 1.39 | 0.45 | 0.52 |  |
| MSB 30 S |  |  |  |  |  | 32.9 | 53.1 | 0.60 | 3.15 | 0.60 | 3.15 | 0.74 | 0.82 | 4.4 |
| MSB 35 TS | 34 | 27.5 | 80 | $20$ | $14 \times 12 \times 9$ | 35.7 | 44.0 | 0.34 | 2.81 | 0.34 | 2.81 | 0.75 | 0.81 |  |
| MSB 35 S |  |  |  |  |  | 52.0 | 75.5 | 0.93 | 5.47 | 0.93 | 5.47 | 1.28 | 1.13 | 6.2 |
| MSB 35 LS |  |  |  |  |  | 63.6 | 100.6 | 1.60 | 8.67 | 1.60 | 8.67 | 1.67 | 1.49 |  |
| MSB 45 S | 45 | 38 | 105 |  |  | 83.8 | 117.9 | 1.81 | 10.67 | 1.81 | 10.67 | 2.57 | 2.17 | 11.5 |
| MSB 45 L.S |  |  |  | 22.5 | $20 \times 17 \times 14$ | 102.4 | 157.3 | 3.13 | 16.98 | 3.13 | 16.95 | 3.43 | 2.69 | 11.5 |

## Wide Rail Type, MSG Series

## Construction



## Characteristics

The trains of balls are designed to a contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, MSG series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion. By design,the ability to use a single rail and to have the low profile with a low center of gravity is ideal where space is limited and high moments are required.

The design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## High Rigidity, Four-way Equal Load

The four trains of balls are allocated to a circular contact angle at $45^{\circ}$, thus each train of balls can take up an equal rated load in all four directions. Moreover, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation

## Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

## Self Alignment Capability

The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

## Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

Wide Rail Type


This type offers the installation either from top or bottom side of carriage.

MSG-S Type


Square type with smaller width and can be
installed from top side of carriage


## Description of Specification

Non-Interchangeable Type



Interchangeable Type
Code of Carriage
MSG 27 E SS FC N


Code of special carriage : No symbol, A, B, ...

## Code of Rail



## Accuracy Grade



Table 3 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | $\mathbf{N}$ | $\mathbf{H}$ | $\mathbf{P}$ | $\mathbf{S P}$ | UP |
| 0 | 315 | 9 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 11 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 13 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 16 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 18 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 20 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 22 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 25 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 28 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 30 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 32 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 33 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 34 | 26 | 18 | 12 | 6 |

Non-Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 17 \\ & 21 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 3) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 3) |  |  |  |  |
| $\begin{aligned} & 27 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.01 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 3) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 3) |  |  |  |  |

## Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | $\begin{aligned} & \text { Precision } \\ & \mathrm{P} \end{aligned}$ |
| $\begin{aligned} & 17 \\ & 21 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 3) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 3) |  |  |
| $\begin{aligned} & 27 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 3) |  |  |
|  | Running parallelism of surface D with surface B | $\Delta \mathrm{D}$ (see the Table 3) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Heavy preload (F1) |
| MSG17 | 0~0.02C | 0.03~0.05C | 0.05~0.08C |
| MSG21 |  |  |  |
| MSG27 |  |  |  |
| MSG35 |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation

MSG series


## Dimensional Tolerance of Mounting Surface

With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $\mathrm{e}_{1}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| 17 | - | 25 | 18 |
| 21 | - | 25 | 20 |
| 27 | 30 | 22 | 20 |
| 35 |  |  |  |

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| 17 |  |  | - |
| 21 | 130 | 85 |  |
| 27 |  |  | 70 |
| 35 |  |  |  |

Note: The permissible values in table are applicable when the span is 500 mm wide.

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ : Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )

Unit: mm

| Model No. | Standard Pitch (P) | Standard ( $\left.\mathrm{E}_{\text {std }}\right)$ | Minimum ( $\left.\mathrm{E}_{\text {min }}\right)$ | Max ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| MSG 17 | 40 | 15 | 5 | 3000 |
| MSG 21 | 50 | 15 | 5 | 3000 |
| MSG 27 | 60 | 20 | 5 | 3000 |
| MSG 35 | 80 | 20 | 7 | 3000 |

## Dimensions of MSG-E



| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width$\mathrm{w}_{1}$ | $\begin{array}{\|c\|} \hline \text { Height } \\ H_{1} \end{array}$ | $\begin{gathered} \text { Pitch } \\ \text { P } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | $\begin{gathered} \text { Dynamic } \\ \text { C } \\ \mathrm{kN} \\ \hline \end{gathered}$ | Static <br> C。 <br> kN | $\begin{gathered} M_{p} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{\gamma} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{R} \\ k N-m \end{gathered}$ | Carriage kg | $\begin{aligned} & \text { Rail } \\ & \mathrm{kg} / \mathrm{m} \end{aligned}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double* |  |  |  |
| MSG17 E | 33 | 9 | 40 | 15 | $7.5 \times 5.3 \times 4.5$ | 4.8 | 8.6 | 0.05 | 0.24 | 0.05 | 0.24 | 0.14 | 0.14 | 2.02 |
| MSG21 E | 37 | 11 | 50 | 15 | $7.5 \times 5.3 \times 4.5$ | 7 | 12.1 | 0.08 | 0.46 | 0.08 | 0.46 | 0.22 | 0.25 | 2.86 |
| MSG27 E | 42 | 15 | 60 | 20 | $7.5 \times 5.3 \times 4.5$ | 12.4 | 20.2 | 0.15 | 0.87 | 0.15 | 0.87 | 0.42 | 0.31 | 4.49 |
| MSG35 E | 69 | 19 | 80 | 20 | $11 \times 9 \times 7$ | 30.7 | 48.6 | 0.65 | 3.6 | 0.65 | 3.6 | 1.67 | 0.99 | 9.4 |

## Dimensions of MSG－S



Unit：mm

| Model No． | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\underset{\mathrm{L}}{\mathrm{Length}}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | F | $5 \times \ell$ | $L_{1}$ | T | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| MSG17 S | 17 | 50 | 50.2 | 8.5 | 2.5 | 29 | 15 | 18 | M4×4 | 33.6 | 6 | 4.15 | 4 | 3.3 | 2.4 | G－M3 |
| MSG21 S | 21 | 54 | 59 | 8.5 | 3 | 31 | 19 | 22 | M5 $\times 6$ | 40 | 8 | 5 | 12 | 4 | 2.5 | G－M6 |
| MSG27 S | 27 | 62 | 72.2 | 10 | 3 | 46 | 32 | 24 | M6×6 | 51.8 | 10 | 6 | 12 | 4 | 3.3 | G－M6 |
| MSG35 S | 35 | 100 | 105.2 | 15.5 | 4 | 76 | 50 | 40 | M8×8 | 77.6 | 10 | 7 | 12 | 5.25 | 3.3 | G－M6 |

Note：The basic dynamic load rating C of ball type is based on the 50 km for nomonal life．The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$ ．
Note ${ }^{*}$ ：Single：Single carriage／Double：Double carriages closely contacting with each other


## Construction



## Characteristics

MSC standard type and MSD wide type stainless steel series are applied two rows with Gothicarch groove and designed to contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Furthermore, ultra compact and low friction resistance design is suit to compact equipment. The lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore,the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## Four-way Equal Load

The two trains of balls are allocated to a Gothic-arch groove contact angle at $45^{\circ}$, thus each train of balls can takeup an equal rated load in all four directions.

## Ultra Compact

The ultra compact design is suit to the compact application with limited in space.

## Ball Retainer

Design with ball retainer can prevent ball form dropping.

## Smooth Movement with Low Noise

The simplified design of circulating system with strengthened synthetic resin accessories makes the movement smooth and quiet.

## Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient. Moreover, this is also beneficial for shortening the delivery time.

## Description of Specification

Non-interchangeable Type


B1-105


Interchangeable Type
Code of Carriage


## Code of Rail



## Accuracy Grade



| Table 4 Running Parallelism <br> Rail length (mm) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | $\mathbf{N}$ | $\mathbf{H}$ | $\mathbf{P}$ |
| - | 40 | 8 | 4 | 1 |
| 40 | 70 | 10 | 4 | 1 |
| 70 | 100 | 11 | 4 | 2 |
| 100 | 130 | 12 | 5 | 2 |
| 130 | 160 | 13 | 6 | 2 |
| 160 | 190 | 14 | 7 | 2 |
| 190 | 220 | 15 | 7 | 3 |
| 220 | 250 | 16 | 8 | 3 |
| 250 | 280 | 17 | 8 | 3 |


| Rail length (mm) |  | Running Parallelism Values( $\mu m$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | N | H | P |
| 1000 | 1030 | 25 | 16 | 5 |
| 1030 | 1060 | 25 | 16 | 6 |
| 1060 | 1090 | 25 | 16 | 6 |
| 1090 | 1120 | 25 | 16 | 6 |
| 1120 | 1150 | 25 | 16 | 6 |
| 1150 | 1180 | 26 | 17 | 6 |
| 1180 | 1210 | 26 | 17 | 6 |
| 1210 | 1240 | 26 | 17 | 6 |
| 1240 | 1270 | 26 | 17 | 6 |
| 1270 | 1300 | 26 | 17 | 6 |
| 1300 | 1330 | 26 | 17 | 6 |
| 1330 | 1360 | 27 | 18 | 6 |
| 1360 | 1390 | 27 | 18 | 6 |
| 1390 | 1420 | 27 | 18 | 6 |
| 1420 | 1450 | 27 | 18 | 7 |
| 1450 | 1480 | 27 | 18 | 7 |
| 1480 | 1510 | 27 | 18 | 7 |
| 1510 | 1540 | 28 | 19 | 7 |
| 1540 | 1570 | 28 | 19 | 7 |
| 1570 | 1800 | 28 | 19 | 7 |

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Clearance (FZ) | Light preload (FC) | Medium preload (F0) |
| MSC7 | Clearance 4~10 $\mu \mathrm{m}$ | Clearance $2 \mu \mathrm{~m} \sim 0.01 \mathrm{C}$ | 0.01~0.02C |
| MSC9 |  |  |  |
| MSC12 |  |  |  |
| MSC15 |  |  |  |
| MSC7L | Clearance 4~10 ${ }^{\text {mm }}$ | Clearance $2 \mu \mathrm{~m} \sim 0.01 \mathrm{C}$ | 0.01~0.02C |
| MSC9L |  |  |  |
| MSC12L |  |  |  |
| MSC15L |  |  |  |
| MSD7 | Clearance 4~10 ${ }^{\text {mm }}$ | Clearance $2 \mu \mathrm{~m} \sim 0.01 \mathrm{C}$ | 0.01~0.02C |
| MSD9 |  |  |  |
| MSD12 |  |  |  |
| MSD15 |  |  |  |
| MSD7L | Clearance 4~10 ${ }^{\text {mm }}$ | Clearance $2 \mu \mathrm{~m} \sim 0.01 \mathrm{C}$ | 0.01~0.02C |
| MSD9L |  |  |  |
| MSD12L |  |  |  |
| MSD15L |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation

## MSD series



## Dimensional Tolerance of Mounting Surface

The tolerances of parallelism between two axes are shown as below.
The parallel deviation between two axes $\left(e_{1}\right)$


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FZ | FC | F0 |
| MSC 7 MSD7 | 3 | 3 | 3 |
| MSC 9 MSD9 | 4 | 4 | 3 |
| MSC 12 MSD12 | 9 | 9 | 5 |
| MSC 15 MSD15 | 10 | 10 | 6 |

## Level difference between two axes $\left(\mathrm{e}_{2}\right)$



Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FZ | FC | F0 |
| MSC 7 MSD7 | 25 | 25 | 6 |
| MSC 9 MSD9 | 35 | 35 | 6 |
| MSC 12 MSD12 | 50 | 50 | 12 |
| MSC 15 MSD15 | 60 | 60 | 20 |

Note: The permissible values in table are applicable when the span is 200 mm wide.

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ : Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )

| Model No. |  | Standard Pitch (P) | Standard $\left(E_{\text {std }}\right)$ | Standard (maximum) ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| MSC | 7 | 15 | 5 | 1000 |
|  | 9 | 20 | 7.5 | 1000 |
|  | 12 | 25 | 10 | 1000 (2000) |
|  | 15 | 40 | 15 | 1000 (2000) |
| MSD | 7 | 30 | 10 | 1000 (2000) |
|  | 9 | 30 | 10 | 1000 (2000) |
|  | 12 | 40 | 15 | 1000 (2000) |
|  | 15 | 40 | 15 | 1000 (2000) |

## Dimensions of MSC-M / MSC-LM



MSC7,MSC9,MSC12


MSC15

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ H \end{gathered}$ | Width W | Length <br> L | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $s \times \ell$ | $L_{1}$ | T | $\mathrm{G}_{1}$ | N | G |
| $\begin{aligned} & \text { MSC } 7 \text { M } \\ & \text { MSC } 7 \text { LM } \end{aligned}$ | 8 | 17 | $\begin{aligned} & 23.6 \\ & 33.0 \end{aligned}$ | 5 | 1.5 | 12 | $\begin{gathered} \hline 8 \\ 13 \\ \hline \end{gathered}$ | M $2 \times 2.5$ | $\begin{aligned} & 13.5 \\ & 22.9 \end{aligned}$ | 6.5 | - | 2 | $\emptyset 0.8$ |
| $\begin{aligned} & \text { MSC } 9 \mathrm{M} \\ & \text { MSC } 9 \mathrm{LM} \\ & \hline \end{aligned}$ | 10 | 20 | $\begin{aligned} & 31.1 \\ & 41.3 \\ & \hline \end{aligned}$ | 5.5 | 2.2 | 15 | $\begin{aligned} & 10 \\ & 16 \\ & \hline \end{aligned}$ | M $3 \times 3$ | $\begin{aligned} & 19.9 \\ & 30.1 \end{aligned}$ | 7.8 | - | 3 | $\varnothing 1$ |
| $\begin{aligned} & \text { MSC } 12 \text { M } \\ & \text { MSC } 12 \text { LM } \end{aligned}$ | 13 | 27 | $\begin{aligned} & 34.6 \\ & 47.5 \end{aligned}$ | 7.5 | 3 | 20 | $\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$ | M $3 \times 3.6$ | $\begin{aligned} & 20.5 \\ & 33.4 \end{aligned}$ | 10 | - | 3 | $\emptyset 1.5$ |
| $\begin{aligned} & \text { MSC } 15 \text { M } \\ & \text { MSC } 15 \text { LM } \\ & \hline \end{aligned}$ | 16 | 32 | $\begin{aligned} & 43.5 \\ & 60.6 \\ & \hline \end{aligned}$ | 8.5 | 4 | 25 | $\begin{aligned} & 20 \\ & 25 \\ & \hline \end{aligned}$ | M $3 \times 4.2$ | $\begin{gathered} 26.9 \\ 44 \\ \hline \end{gathered}$ | 12 | 4.15 | 3 | G-M3 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


|  | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No . | Width $W_{1}$ | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{gathered} \text { Pitch } \\ \mathrm{P} \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | $\begin{gathered} \hline \text { Dynamic } \\ \text { c } \\ \text { kN } \\ \hline \end{gathered}$ | Static <br> C。 <br> kN |  | $\begin{aligned} & M_{p} \\ & N-m \\ & N-{ }^{*} \text { Double* } \end{aligned}$ |  | $\begin{aligned} & \hline M_{Y} \\ & N-m \\ & 2^{*} \text { Double* } \end{aligned}$ | $\begin{gathered} M_{R} \\ N-m \end{gathered}$ | $\begin{gathered} \text { Carriage } \\ \mathrm{g} \end{gathered}$ | $\begin{gathered} \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{gathered}$ |
| $\begin{aligned} & \text { MSC } 7 \text { M } \\ & \text { MSC } 7 \mathrm{LM} \end{aligned}$ | ${ }^{7} \begin{gathered} 0 \\ -0.05 \end{gathered}$ | 4.7 | 15 | 5 | $4.2 \times 2.3 \times 2.4$ | $\begin{aligned} & 0.94 \\ & 1.36 \end{aligned}$ | $\begin{aligned} & 1.28 \\ & 2.24 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 7.4 \end{aligned}$ | $\begin{aligned} & 15.33 \\ & 37.92 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 7.4 \end{aligned}$ | $\begin{aligned} & 15.33 \\ & 37.92 \end{aligned}$ | $\begin{aligned} & 4.7 \\ & 8.3 \end{aligned}$ | $\begin{gathered} 7 \\ 13 \end{gathered}$ | 0.22 |
| MSC 9 M MSC 9 LM | $9 \begin{gathered} 0 \\ -0.05 \end{gathered}$ | 5.5 | 20 | 7.5 | $6 \times 3.3 \times 3.5$ | $\begin{aligned} & 1.71 \\ & 2.52 \\ & \hline \end{aligned}$ | $\begin{aligned} & 2.24 \\ & 3.92 \end{aligned}$ | 6.1 17.4 | 33.46 84.63 | 6.1 17.4 | $\begin{aligned} & 33.46 \\ & 84.63 \\ & \hline \end{aligned}$ | $\begin{aligned} & 10.8 \\ & 18.8 \end{aligned}$ | $\begin{aligned} & 15 \\ & 24 \end{aligned}$ | 0.33 |
| $\begin{aligned} & \text { MSC } 12 \mathrm{M} \\ & \text { MSC } 12 \mathrm{LM} \end{aligned}$ | $12 \begin{gathered} 0 \\ -0.05 \end{gathered}$ | 7.5 | 25 | 10 | $6 \times 4.5 \times 3.5$ | $\begin{aligned} & 2.62 \\ & 3.77 \end{aligned}$ | $\begin{aligned} & 3.52 \\ & 5.72 \end{aligned}$ | 11.4 28.3 | $\begin{gathered} 63.96 \\ 141.52 \\ \hline \end{gathered}$ | 11.4 | $\begin{gathered} 63.96 \\ 141.52 \end{gathered}$ | $\begin{aligned} & 22.2 \\ & 36.0 \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \\ & \hline \end{aligned}$ | 0.63 |
| $\begin{aligned} & \text { MSC } 15 \text { M } \\ & \text { MSC } 15 \mathrm{LM} \end{aligned}$ | $15 \begin{gathered} 0 \\ -0.05 \end{gathered}$ | 9.5 | 40 | 15 | $6 \times 4.5 \times 3.5$ | $\begin{aligned} & 4.52 \\ & 6.47 \end{aligned}$ | $\begin{aligned} & 5.70 \\ & 9.26 \end{aligned}$ | $\begin{aligned} & 24.7 \\ & 61.0 \end{aligned}$ | $\begin{aligned} & 132.17 \\ & 295.87 \end{aligned}$ | $\begin{aligned} & 724.7 \\ & 761.0 \end{aligned}$ | $\begin{aligned} & 132.17 \\ & 295.87 \end{aligned}$ | $\begin{aligned} & 44.4 \\ & 72.2 \end{aligned}$ | $\begin{gathered} 71 \\ 100 \end{gathered}$ | 1.02 |

## Dimensions of MSD-M / MSD-LM



| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Width } \\ \text { W } \end{gathered}$ | $\begin{gathered} \hline \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | N | G |
| $\begin{aligned} & \text { MSD } 7 \text { M } \\ & \text { MSD } 7 \text { LM } \end{aligned}$ | 9 | 25 | $\begin{aligned} & 30.8 \\ & 40.5 \end{aligned}$ | 5.5 | 2 | 19 | $\begin{aligned} & \hline 10 \\ & 19 \end{aligned}$ | M3×3 | $\begin{aligned} & 20.6 \\ & 30.3 \end{aligned}$ | 7 | 2.2 | $\varnothing 1.5$ |
| $\begin{aligned} & \text { MSD } 9 \text { M } \\ & \text { MSD } 9 \mathrm{LM} \end{aligned}$ | 12 | 30 | $\begin{aligned} & 38.7 \\ & 50.7 \end{aligned}$ | 6 | 3.7 | $\begin{aligned} & 21 \\ & 23 \end{aligned}$ | $\begin{aligned} & 12 \\ & 24 \end{aligned}$ | M3×3 | $\begin{aligned} & 27.1 \\ & 39.1 \end{aligned}$ | 8.3 | 3 | $\varnothing 1.5$ |
| $\begin{aligned} & \text { MSD } 12 \mathrm{M} \\ & \text { MSD } 12 \mathrm{LM} \end{aligned}$ | 14 | 40 | $\begin{gathered} 44.5 \\ 60 \end{gathered}$ | 8 | 4 | 28 | $\begin{aligned} & 15 \\ & 28 \end{aligned}$ | M3×4 | $\begin{aligned} & 31.0 \\ & 46.5 \\ & \hline \end{aligned}$ | 10 | 3 | $\varnothing 1.5$ |
| $\begin{aligned} & \text { MSD } 15 \mathrm{M} \\ & \text { MSD } 15 \mathrm{LM} \\ & \hline \end{aligned}$ | 16 | 60 | $\begin{aligned} & 55.5 \\ & 74.5 \end{aligned}$ | 9 | 4 | 45 | $\begin{aligned} & 20 \\ & 35 \\ & \hline \end{aligned}$ | M4×4.5 | $\begin{array}{r} 40.3 \\ 59.3 \\ \hline \end{array}$ | 12 | 3.6 | $\varnothing 1.5$ |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


## Roller Heavy Load Type, MSR Series

## Construction



## Characteristics

The full roller type linear guideway, MSR series, equip with rollers instead of the ball, and therefore the MSR series can provide higher rigidity and loading than the normal type with the same size. Especially suit for the requests of high accuracy, heavy load and high rigidity.

## Ultra Heavy Load

MSR linear guideway through rollers have a line contact with carriage and rail. Relative to the general type linear guideway through balls have a point contact; the MSR type linear guideway can offer lower elastic deformation while bearing the same load. Base on the rollers have the same outer diameter with balls, the roller can bear the heavier load. The excellent characteristics of high rigidity and ultra heavy load can suitable for the high accuracy application that heavy load is processed even more


## The Optimization Design of Four Directional Load

Through the structure stress analysis of finite element method, MSR series have four trains of rollers are designed to a contact angle of $45^{\circ}$ and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.


## Ultra High Rigidity

Test data of rigidity
Test samples : Ball type MSA30LE with preload F1
Full roller type MSR30LE with preload F1
Roller chain type SMR30LE with preload F1



## Carriage Type

## Rail Type

Heavy Load
MSR-EType

This type offers the installation either from top or bottom side of carriage.

Ultra Heavy Load


All dimensions are same as MSR-E except the
length is longer, which makes it more rigid.


Square type with smaller width and can be installed from top side of carriage.


All dimensions are same as MSR-S except the length is longer, which makes it more rigid.

## Counter Bore ( R type)




## Description of Specification

Non-interchangeable Type



Interchangeable Type


Accuracy grade: H, P
Code of special carriage : No symbol, A, B, ...

## Code of Rail



## Accuracy Grade



Table 6 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | H | $\mathbf{P}$ | SP | UP |
| 0 | 315 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 26 | 18 | 12 | 6 |

Non-Interchangeable Type

| Model No. | Item. | Accuracy Grade |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | High $\mathrm{H}$ | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 6) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |  |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 6) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |  |  |
| 65 | Tolerance for height H | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \end{gathered}$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.025 | 0.015 | 0.01 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 6) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |  |  |

Interchangeable Type

| Model No. | Item. | Accuracy Grade |  |
| :---: | :---: | :---: | :---: |
|  |  | High $\mathrm{H}$ | Precision P |
| $\begin{aligned} & 20 \\ & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta C$ (see the Table 6) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta C$ (see the Table 6) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |
| 65 | Tolerance for height H | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.07$ | $\begin{gathered} 0 \\ -0.07 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.025 | 0.015 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 6) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 6) |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Medium preload (F0) | Heavy preload(F1) | Ultra heavy preload(F2) |
| MSR20 | 0.04~0.06C | 0.07~0.09C | 0.12~0.14C |
| MSR25 |  |  |  |
| MSR30 |  |  |  |
| MSR35 |  |  |  |
| MSR45 |  |  |  |
| MSR55 |  |  |  |
| MSR65 |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

The Shoulder Height and Corner Radius for Installation


## Dimensional Tolerance of Mounting Surface

With the high rigidity, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $e_{1}$ )
Unit: $\mu m$


| $\left(\mathbf{e}_{\mathbf{1}}\right)$ |  |  |  |
| :--- | :---: | :---: | :---: |
| Model | Preload Grade |  |  |
|  | F0 | F1 | F2 |
|  | 7 | 5 | 3 |
| $\mathbf{2 5}$ | 9 | 7 | 5 |
| $\mathbf{3 0}$ | 11 | 8 | 6 |
| $\mathbf{3 5}$ | 14 | 10 | 7 |
| $\mathbf{4 5}$ | 17 | 13 | 9 |
| $\mathbf{5 5}$ | 21 | 14 | 11 |
| $\mathbf{6 5}$ | 27 | 18 | 14 |

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | F0 | F1 | F2 |
| 20 | 150 | 105 | 55 |
| 25 |  |  |  |
| 30 |  |  |  |
| 35 |  |  |  |
| 45 |  |  |  |
| 55 |  |  |  |
| 65 |  |  |  |

Level difference between two axes ( $\mathrm{e}_{3}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | F0 | F1 | F2 |
| 20 |  |  |  |
| 25 |  |  |  |
| 30 |  |  |  |
| 35 |  | 18 |  |
| 45 |  |  |  |
| 55 |  |  |  |
| 65 |  |  |  |

Note: The permissible values in table are applicable when the span is 500 mm wide.

[^0]
## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ :Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E:$ Distance from the center of the last hole to the edge ( mm )

Unit: mm

| Model No. | Standard Pitch <br> $(P)$ | Standard ( $\left.\mathrm{E}_{\text {std }}\right)$ | Minimum ( $\left.\mathrm{E}_{\text {min. }}\right)$ | Max ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| MSR 20 | 30 | 20 | 6 | 4000 |
| MSR 25 | 30 | 20 | 7 | 4000 |
| MSR 30 | 40 | 20 | 8 | 4000 |
| MSR 35 | 40 | 20 | 8 | 4000 |
| MSR 45 | 52.5 | 22.5 | 11 | 4000 |
| MSR 55 | 60 | 30 | 13 | 4000 |
| MSR 65 | 75 | 35 | 4000 |  |

## Tapped Hole Rail Dimensions



| Rail Model | S | $\mathrm{h}(\mathrm{mm})$ |
| :---: | :---: | :---: |
| MSR 20T | M6 | 11 |
| MSR 25 T | M6 | 12 |
| MSR 30 T | M8 | 15 |
| MSR 35 T | M8 | 17 |
| MSR 45 T | M12 | 24 |
| MSR 55 T | M14 | 24 |
| M20 T |  | 30 |



Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\begin{gathered} \text { Length } \\ L \end{gathered}$ | $\mathrm{w}_{2}$ | $\mathrm{H}_{2}$ | B | C | $\mathrm{C}_{2}$ |  | s | $\mathrm{L}_{1}$ | T | $\mathrm{T}_{2}$ | T3 | N | G | к | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease Nipple |
| MSR 20 E MSR 20 LE | 30 | 63 | $\begin{aligned} & \hline 89.8 \\ & 109.8 \end{aligned}$ | $21.5$ | 4.6 | 53 | 40 | 35 |  | M6 | $\begin{aligned} & 57.8 \\ & 77.8 \end{aligned}$ | 8 | - | 7.8 | 5 | 5.15 | 4 | 6.5 | M4 | G-M4 |
| $\begin{aligned} & \text { MSR } 25 \text { E } \\ & \text { MSR } 25 \text { LE } \end{aligned}$ | 36 | 70 | $\begin{gathered} 97.5 \\ 115.5 \end{gathered}$ | $23.5$ | 4.8 | 57 | 45 | 40 |  | M8 | $\begin{aligned} & 65.5 \\ & 83.5 \end{aligned}$ | 9.5 | 10 | 5.8 | 6 | 12 | 6.6 | 6.5 | M6 | G-M6 |
| MSR 30 E MSR 30 LE | 42 | 90 | $\begin{aligned} & 112.4 \\ & 135.2 \end{aligned}$ | 31 | 6 | 72 | 52 |  |  | 10 | $\begin{aligned} & 75.9 \\ & 98.7 \end{aligned}$ | 10 | 13 | 6.7 | 7 | 12 | 8 | 7 | M6 | G-M6 |
| MSR 35 E MSR 35 LE | 48 | 100 | $\begin{aligned} & 125.3 \\ & 153.5 \end{aligned}$ | 33 | 6.5 | 82 | 62 | 52 |  | 10 | $\begin{aligned} & 82.3 \\ & 110.5 \end{aligned}$ | 12 | 15 | 9.5 | 8 | 12 | 8 | 7 | M6 | G-M6 |
| MSR 45 E MSR 45 LE | 60 | 120 | $\begin{aligned} & 154.2 \\ & 189.4 \end{aligned}$ | $37.5$ | 8 | 100 | 80 | 60 |  | 12 | $\begin{aligned} & 106.5 \\ & 141.7 \end{aligned}$ | 14.5 | 15 | 12.5 | 10 | 13.5 | 10 | 8 | M6 | G-PT 1/8 |
| MSR 55 E MSR 55 LE | 70 | 140 | $\begin{aligned} & 185.4 \\ & 235.4 \end{aligned}$ | $43.5$ | 10 | 116 | 95 | 70 | M1 | 14 | $\begin{aligned} & 129.5 \\ & 179.5 \end{aligned}$ | 17.5 | 18 | 15.5 | 11 | 13.5 | 12 | 7.95 | M6 | G-PT 1/8 |
| MSR 65 E MSR 65 LE | 90 | 170 | $\begin{aligned} & 238.4 \\ & 300.4 \end{aligned}$ | ${ }_{4}^{4} 53.5$ | 12 | 142 | 110 | 82 | 2 M1 | 16 | $\begin{aligned} & 168 \\ & 230 \end{aligned}$ | 19.5 | 20 | 26 | 16.5 | 13.5 | 12 | 8 |  | G-PT 1/8 |

[^1]
H


| Model No. | Bolt Size |  |
| :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ |
| MSR 20 | M6 | - |
| MSR 25 | M8 | M6 |
| MSR 30 | M10 | M8 |
| MSR 35 | M10 | M8 |
| MSR 45 | M12 | M10 |
| MSR 55 | M14 | M12 |
| MSR 65 | M16 | M14 |


| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width $\mathrm{W}_{1}$ | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{gathered} \text { Pitch } \\ \text { P } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | DynamicCkN | Static C。 kN | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{\mathrm{R}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | Carriage <br> kg | $\begin{array}{\|c\|c\|} \hline \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{array}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double ${ }^{*}$ |  |  |  |
| $\begin{aligned} & \text { MSR } 20 \mathrm{E} \\ & \text { MSR } 20 \mathrm{LE} \end{aligned}$ | 20 | 20 | 30 | 20 | $9.5 \times 8.5 \times 6$ | $\begin{aligned} & 22.8 \\ & 26.6 \end{aligned}$ | $\begin{aligned} & 60.8 \\ & 74.0 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 2.85 \\ & 4.24 \end{aligned}$ | $\begin{aligned} & 0.51 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 2.85 \\ & 4.24 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.69 \end{aligned}$ | $\begin{aligned} & 0.54 \\ & 0.71 \end{aligned}$ | 2.6 |
| MSR 25 E MSR 25 LE | 23 | 23.5 | 30 | 20 | $11 \times 9 \times 7$ | $\begin{aligned} & 29.6 \\ & 36.3 \end{aligned}$ | $\begin{aligned} & 63.8 \\ & 82.9 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 3.82 \\ & 5.94 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 3.82 \\ & 5.94 \end{aligned}$ | $\begin{aligned} & 0.73 \\ & 0.95 \end{aligned}$ | $\begin{aligned} & 0.75 \\ & 0.95 \end{aligned}$ | 3.5 |
| $\begin{aligned} & \text { MSR } 30 \text { E } \\ & \text { MSR } 30 \text { LE } \end{aligned}$ | 28 | 27.5 | 40 | 20 | $14 \times 12 \times 9$ | $\begin{aligned} & 42.8 \\ & 54.0 \end{aligned}$ | $\begin{gathered} 91.9 \\ 124.0 \end{gathered}$ | $\begin{aligned} & 1.09 \\ & 1.96 \end{aligned}$ | $\begin{gathered} 6.38 \\ 10.60 \end{gathered}$ | $\begin{aligned} & 1.09 \\ & 1.96 \end{aligned}$ | $\begin{gathered} 6.38 \\ 10.60 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.27 \\ & 1.75 \end{aligned}$ | $\begin{gathered} 1.4 \\ 1.72 \end{gathered}$ | 5 |
| MSR 35 E MSR 35 LE | 34 | 30.5 | 40 | 20 | $14 \times 12 \times 9$ | $\begin{aligned} & 57.9 \\ & 73.9 \end{aligned}$ | $\begin{aligned} & 123.5 \\ & 169.0 \end{aligned}$ | $\begin{aligned} & 1.59 \\ & 2.94 \end{aligned}$ | $\begin{gathered} 9.56 \\ 16.18 \end{gathered}$ | $\begin{aligned} & 1.59 \\ & 2.94 \end{aligned}$ | $\begin{gathered} 9.56 \\ 16.18 \end{gathered}$ | $\begin{aligned} & 2.09 \\ & 2.85 \end{aligned}$ | $\begin{aligned} & 1.95 \\ & 2.45 \\ & \hline \end{aligned}$ | 7 |
| MSR 45 E MSR 45 LE | 45 | 37 | 52.5 | 22.5 | 20×17×14 | $\begin{gathered} 92.8 \\ 117.2 \end{gathered}$ | $\begin{aligned} & 193.8 \\ & 261.6 \end{aligned}$ | $\begin{aligned} & 3.28 \\ & 5.90 \end{aligned}$ | $\begin{aligned} & 18.76 \\ & 31.32 \end{aligned}$ | $\begin{aligned} & 3.28 \\ & 5.90 \end{aligned}$ | $\begin{aligned} & 18.76 \\ & 31.32 \end{aligned}$ | $\begin{aligned} & 4.40 \\ & 5.94 \end{aligned}$ | $\begin{aligned} & 3.9 \\ & 4.5 \end{aligned}$ | 11.2 |
| $\begin{aligned} & \text { MSR } 55 \mathrm{E} \\ & \text { MSR } 55 \mathrm{LE} \end{aligned}$ | 53 | 43 | 60 | 30 | $23 \times 20 \times 16$ | $\begin{aligned} & 132.8 \\ & 172.5 \end{aligned}$ | $\begin{aligned} & 270.0 \\ & 378.0 \end{aligned}$ | $\begin{aligned} & 5.49 \\ & 10.60 \end{aligned}$ | $\begin{aligned} & 31.18 \\ & 55.58 \end{aligned}$ | $\begin{aligned} & 5.49 \\ & 10.60 \end{aligned}$ | $\begin{aligned} & 31.18 \\ & 55.58 \end{aligned}$ | $\begin{aligned} & 7.33 \\ & 10.28 \end{aligned}$ | $\begin{gathered} 6 \\ 7.9 \end{gathered}$ | 15.6 |
| $\begin{aligned} & \text { MSR } 65 \mathrm{E} \\ & \text { MSR } 65 \mathrm{LE} \end{aligned}$ | 63 | 52 | 75 | 35 | $26 \times 22 \times 18$ | $\begin{aligned} & 219.5 \\ & 277.0 \end{aligned}$ | $\begin{aligned} & 462.9 \\ & 624.0 \end{aligned}$ | $\begin{aligned} & 11.81 \\ & 22.50 \end{aligned}$ | $\begin{gathered} 59.25 \\ 117.87 \end{gathered}$ | $\begin{aligned} & 11.81 \\ & 22.50 \end{aligned}$ | $\begin{gathered} 59.25 \\ 117.87 \end{gathered}$ | $\begin{aligned} & 13.71 \\ & 20.02 \end{aligned}$ | $\begin{gathered} 13 \\ 17.6 \end{gathered}$ | 22.4 |



| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\begin{gathered} \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{w}_{2}$ | $\mathrm{H}_{2}$ | B | c | S | $\ell$ | $\mathrm{L}_{1}$ | T | N | G | к | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease <br> Nipple |
| $\begin{aligned} & \text { MSR } 20 \text { S } \\ & \text { MSR } 20 \text { LS } \end{aligned}$ | 30 | 44 | $\begin{gathered} 89.8 \\ 109.8 \end{gathered}$ | 12 | 4.6 | 32 | $\begin{aligned} & 36 \\ & 50 \end{aligned}$ | M5 | 7 | $\begin{aligned} & 57.8 \\ & 77.8 \end{aligned}$ | 8 | 5 | 5.15 | 4 | 6.5 | M4 | G-M4 |
| $\begin{aligned} & \text { MSR } 25 \text { S } \\ & \text { MSR } 25 \text { LS } \end{aligned}$ | 40 | 48 | $\begin{gathered} 97.5 \\ 115.5 \end{gathered}$ | 12.5 | 4.8 | 35 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M6 | 9 | $\begin{aligned} & 65.5 \\ & 83.5 \end{aligned}$ | 9.5 | 10 | 12 | 6.6 | 6.5 | M6 | G-M6 |
| MSR 30 S MSR 30 LS | 45 | 60 | $\begin{aligned} & 112.4 \\ & 135.2 \end{aligned}$ | 16 | 6 | 40 | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | M8 | 12 | $\begin{aligned} & 75.9 \\ & 98.7 \end{aligned}$ | 10 | 10 | 12 | 8 | 7 | M6 | G-M6 |
| $\begin{aligned} & \text { MSR } 35 \text { S } \\ & \text { MSR } 35 \text { LS } \end{aligned}$ | 55 | 70 | $\begin{aligned} & 125.3 \\ & 153.5 \end{aligned}$ | 18 | 6.5 | 50 | $\begin{aligned} & 50 \\ & 72 \end{aligned}$ | M8 | 14 | $\begin{gathered} 82.3 \\ 110.5 \end{gathered}$ | 12 | 15 | 12 | 8 | 7 | M6 | G-M6 |
| MSR 45 S <br> MSR 45 LS | 70 | 86 | $\begin{aligned} & 154.2 \\ & 189.4 \end{aligned}$ | $20.5$ | 8 | 60 | $\begin{aligned} & 60 \\ & 80 \end{aligned}$ | M10 | 19 | $\begin{aligned} & 106.5 \\ & 141.7 \end{aligned}$ | 17 | 20 | 13.5 | 10 | 8 | M6 | G-PT 1/8 |
| $\begin{aligned} & \text { MSR } 55 \text { S } \\ & \text { MSR } 55 \text { LS } \end{aligned}$ | 80 | 100 | $\begin{aligned} & 185.4 \\ & 235.4 \end{aligned}$ | 23.5 | 10 | 75 | $\begin{aligned} & 75 \\ & 95 \end{aligned}$ | M12 | 19 | $\begin{aligned} & 129.5 \\ & 179.5 \end{aligned}$ | 18 | 21 | 13.5 | 12 | 7.95 | M6 | G-PT 1/8 |
| MSR 65 S <br> MSR 65 LS | 90 | 126 | $\begin{aligned} & 238.4 \\ & 300.4 \end{aligned}$ | $31.5$ | 12 | 76 | $\begin{gathered} 70 \\ 120 \end{gathered}$ | M16 | 20 | $\begin{aligned} & 168 \\ & 230 \end{aligned}$ | 19.5 | 16.5 | 13.5 | 12 | 8 | M6 | G-PT 1/8 |


| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Width } \\ \mathrm{w}_{1} \end{gathered}$ | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{gathered} \text { titch } \\ \mathrm{P} \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | $\begin{gathered} \text { Dynamic } \\ \text { c } \\ \text { kN } \end{gathered}$ | Static <br> C。 <br> kN | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} \mathrm{M}_{\mathrm{R}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | Carriage <br> kg | $\begin{aligned} & \text { Rail } \\ & \mathrm{kg} / \mathrm{m} \end{aligned}$ |
|  |  |  |  |  |  |  |  | Single* | Double ${ }^{*}$ | Single* | Double* |  |  |  |
| MSR 20 S | 20 | 20 | 30 | 20 | $9.5 \times 8.5 \times 6$ | $\begin{aligned} & 22.8 \\ & 26.6 \end{aligned}$ | $\begin{aligned} & 60.8 \\ & 74.0 \end{aligned}$ | 0.51 | 2.85 | 0.51 | 2.85 | 0.62 | 0.34 | 2.6 |
| MSR 20 LS |  |  |  |  |  |  |  | 0.84 | 4.24 | 0.84 | 4.24 | 0.69 | 0.45 | 2.6 |
| MSR 25 S | 23 | 23.5 | 30 | 20 | $11 \times 9 \times 7$ | 29.6 | 63.8 | 0.65 | 3.82 | 0.65 | 3.82 | 0.73 | 0.65 |  |
| MSR 25 LS |  |  |  |  |  | 36.3 | 82.9 | 1.08 | 5.94 | 1.08 | 5.94 | 0.95 | 0.85 | 3.5 |
| MSR 30 S | 28 | 27.5 | 40 | 20 | $14 \times 12 \times 9$ | 42.8 | 91.9 | 1.09 | 6.38 | 1.09 | 6.38 | 1.27 | , | 5 |
| MSR 30 LS |  |  |  |  |  | 54.0 | 124.0 | 1.96 | 10.60 | 1.96 | 10.60 | 1.72 | 1.22 | 5 |
| R 35 | 34 | 30.5 | 40 | 20 | $14 \times 12 \times 9$ | 57.9 | 123.5 | 1.59 | 9.56 | 1.59 | 9.56 | 2.09 | 1.65 |  |
| MSR 35 LS |  |  |  |  |  | 73.9 | 169.0 | 2.94 | 16.18 | 2.94 | 16.18 | 2.85 | 2.15 | 7 |
| MSR 45 S | 45 | 37 | 52.5 | 22.5 | 20×17×14 | 92.8 | 193.8 | 3.28 | 18.76 | 3.28 | 18.76 | 4.40 | 3.2 | 11 |
| MSR 45 LS |  |  |  |  |  | 117.2 | 261.6 | 5.90 | 31.32 | 5.90 | 31.32 | 5.94 | 4.1 | 11.2 |
| MSR 55 S | 53 | 43 | 60 | 30 | $23 \times 20 \times 16$ | 132.8 | 270.0 | 5.49 | 31.18 | 5.49 | 31.18 | 7.33 | 5.1 | 15.6 |
| MSR 55 LS |  |  |  |  |  | 172.5 | 378.0 | 10.60 | 55.58 | 10.60 | 55.58 | 10.26 | 7 | 15.6 |
| MSR 65 S | 63 | 52 | 75 | 35 | $26 \times 22 \times 18$ | 219.5 | 426.9 | 11.81 | 59.25 | 11.81 | 59.25 | 13.71 | 10.1 |  |
| MSR 65 LS |  |  |  |  |  | 277.0 | 624.0 | 22.50 | 117.87 | 22.50 | 117.87 | 20.02 | 13.3 | 22.4 |

## Full Roller Chain Type SMR Series

## Construction



## Characteristics

The roller chain type linear guideway, SMR series, equip with rollers instead of the ball, and therefore the SMR series can provide higher rigidity and loading than the normal type with the same size. Besides, the roller chain design can make the movement smooth and stability, especially suit for the requests of high accuracy, heavy load and high rigidity.

## Ultra Heavy Load

SMR linear guideway through rollers have a line contact with carriage and rail. Relative to the general type linear guideway through balls have a point contact; the SMR type linear guideway can offer lower elastic deformation while bearing the same load. Base on the rollers have the same outer diameter with balls, the roller can bear the heavier load. The excellent characteristics of high rigidity and ultra heavy load can suitable for the high accuracy application that heavy load is processed even more


## Ultra High Rigidity

Test data of rigidity
Test samples

## The Optimization Design of Four Directional Load

Through the structure stress analysis of finite element method, SMR series have four trains of rollers are designed to a contact angle of $45^{\circ}$ and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.


Ball type MSA30LE with preload F
Full roller type MSR30LE with preload F1
Roller chain type SMR30LE with preload F1



Radial load(kgf)

## Roller Chain Design, Smooth Movement

The concise and smooth design of circulating system with strengthened synthetic resin accessories and cooperating with the roller chain, these can avoid interference between rollers and make the rollers more stability during passing in and out the load district. Besides, the roller chain can keep the roller move in a line and improve the movement most smooth substantially.


## Low Noise, Good Lubricant Effect

The roller chain design avoids interference between rollers, lowers the operating noise, and can keep the lubricant between the rollers and roller chain effectively. Moreover, improve the movement smooth and service life of the whole, can meet high accuracy, high reliability and smooth and stability.

## Carriage Type

Heavy Load


This type offers the installation either from top or bottom side of carriage.


Square type with smaller width and can be installed from top side of carriage.

Counter Bore (R type)


Tapped Hole (T type)


All dimensions are same as SMR-S except the
length is longer, which makes it more rigid.

## Description of Specification




Interchangeable Type
Code of Carriage
SMR 25 E SS FO H

| Series: SMR |
| :--- |
| Size : 25, 30, 35, 45, 55, 65 |

Carriage type : Heavy load
E : Flange type, mounting either from top or bottom
S: Square type
Ultra heavy load
LE : Flange type, mounting either from top or bottom
LS: Square type
Dust protection option of carriage :
No symbol, UU, SS, ZZ, DD, KK (refer to Dust Proof [B1-242])
Preload : F0 (Medium preload), F1 (Heavy preload)
Accuracy grade : H, P
Code of special carriage : No symbol, A, B, ...

Code of Rail

Series: SMR
Size : 25, 30, 35, 45, 55, 65
Rail type : R (Counter-bore type), T (Tapped hole type) Rail length (mm)
Rail hole pitch from start side (E1, see Fig.6)
Rail hole pitch to the end side (E2, see Fig.6
Accuracy grade : H, P
Code of special rail : No symbol, A, B ...
Dust protection option of rail : No symbol, /CC, /CD, /MC, /MD ...
(refer to Code of Contamination for Rail [B1-243])

## Accuracy Grade



Table 7 Running Parallelism
Table 7 Running Parallelism

| Rail length (mm) | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | H | P | SP | UP |
| 0 | 315 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 26 | 18 | 12 | 6 |
|  |  |  |  |  |  |

Non-Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { High } \\ \mathbf{H} \end{gathered}$ | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 7) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |  |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Running parallelism of surface C with surface A | $\Delta \mathrm{C}$ (see the Table 7) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |  |  |
| 65 | Tolerance for height H | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.025 | 0.015 | 0.01 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 7) |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |  |  |

## Interchangeable Type

| Model No. | Item | Accuracy Grade |  |
| :---: | :---: | :---: | :---: |
|  |  | High $\mathrm{H}$ | Precision P |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 7) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |
| $\begin{aligned} & 45 \\ & 55 \end{aligned}$ | Tolerance for height H | $\pm 0.05$ | $\begin{gathered} 0 \\ -0.05 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 |
|  | Running parallelism of surface C with surface A | $\Delta C$ (see the Table 7) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |
| 65 | Tolerance for height H | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.07$ | $\begin{gathered} \hline 0 \\ -0.07 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.025 | 0.015 |
|  | Running parallelism of surface C with surface A | $\Delta \mathrm{C}$ (see the Table 7) |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 7) |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Medium preload (F0) | Heavy preload (F1) | Ultra Heavy Preload (F2) |
| SMR25 | 0.04~0.06C | 0.07~0.09C | 0.12~0.14C |
| SMR30 |  |  |  |
| SMR35 |  |  |  |
| SMR45 |  |  |  |
| SMR55 |  |  |  |
| SMR65 |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

The Shoulder Height and Corner Radius for Installation

Unit: mm

| Model <br> No. | $r_{1}$ <br> (max.) | $r_{2}$ <br> $($ max. $)$ | $h_{1}$ | $h_{2}$ | $H_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 0.5 | 0.5 | 4 | 8 | 4.8 |
| 30 | 0.5 | 0.5 | 5 | 8 | 6 |
| 35 | 1 | 1 | 5.5 | 10 | 6.5 |
| 45 | 1 | 1 | 6 | 12 | 8.1 |
| 55 | 1 | 1 | 8 | 15 | 10 |
| 65 | 1 | 1 | 10 | 15 | 12 |

## Dimensional Tolerance of Mounting Surface

SMR with the high rigidity, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes $\left(e_{1}\right)$
Unit: $\mu_{m}$

| Model <br> No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | F0 | F1 | F2 |
| $\mathbf{2 5}$ | 9 | 7 | 5 |
| $\mathbf{3 0}$ | 11 | 8 | 6 |
| $\mathbf{3 5}$ | 14 | 10 | 7 |
| 45 | 17 | 13 | 9 |
| $\mathbf{5 5}$ | 21 | 14 | 11 |
| 65 | 27 | 18 | 14 |

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | F0 | F1 | F2 |
| 25 | 150 | 105 | 55 |
| 30 |  |  |  |
| 35 |  |  |  |
| 45 |  |  |  |
| 55 |  |  |  |
| 65 |  |  |  |

Level difference between two axes ( $\mathrm{e}_{3}$ )


| 25 |
| :--- |
| 30 |
| 35 |
| 45 |
| 55 |
| 65 |

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ :Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )

| Model No. | Standard Pitch <br> $(P)$ | Standard ( $\left.\mathrm{E}_{\text {std }}\right)$ | Minimum ( $\left.\mathrm{E}_{\text {min }}\right)$ | Max ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| SMR 25 | 30 | 20 | 7 | 4000 |
| SMR 30 | 40 | 20 | 8 | 4000 |
| SMR 35 | 40 | 20 | 8 | 4000 |
| SMR 45 | 52.5 | 22.5 | 11 | 4000 |
| SMR 55 | 60 | 30 | 13 | 4000 |
| SMR 65 | 75 | 35 | 14 | 4000 |

## Tapped Hole Rail Dimensions



| Rail Model | S | h(mm) |
| :---: | :---: | :---: |
| SMR 25 T | M6 | 12 |
| SMR 30 T | M8 | 15 |
| SMR 35 T | M8 | 17 |
| SMR 45 T | M12 | 24 |
| SMR 55 T | M14 | 24 |
| SMR 65 T | M20 | 30 |



Unit: mm

| Unit: mm |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{gathered} \text { Height } \\ \text { H } \end{gathered}$ | $\begin{gathered} \text { Width } \\ \mathrm{w} \end{gathered}$ | Length <br> L | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $\mathrm{C}_{2}$ | S |  | $\mathrm{L}_{1}$ | T | $\mathrm{T}_{2}$ | $\mathrm{T}_{3}$ | N | G | K | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease Nipple |
| SMR 25 E <br> SMR 25 LE | 36 | 70 | $\begin{gathered} \hline 97.5 \\ 115.5 \\ \hline \end{gathered}$ | 23.5 | 4.8 | 57 | 45 | 40 | M |  | $\begin{array}{r} 65.5 \\ 83.5 \\ \hline \end{array}$ | 9.5 | 10 | 5.8 | 6 | 12 | 6.6 | 6.5 | M6 | G-M6 |
| SMR 30 E <br> SMR 30 LE | 42 | 90 | $\begin{aligned} & 112.4 \\ & 135.2 \end{aligned}$ | 31 | 6 | 72 | 52 | 44 | M |  | $\begin{aligned} & 75.9 \\ & 98.7 \end{aligned}$ | 10 | 13 | 6.7 | 7 | 12 | 8 | 7 | M6 | G-M6 |
| SMR 35 E <br> SMR 35 LE | 48 | 100 | $\begin{aligned} & 125.3 \\ & 153.5 \end{aligned}$ | 33 | 6.5 | 82 | 62 | 52 | M1 |  | $\begin{aligned} & 82.3 \\ & 110.5 \end{aligned}$ | 12 | 15 | 9.5 | 8 | 12 | 8 | 7 | M6 | G-M6 |
| SMR 45 E <br> SMR 45 LE | 60 | 120 | $\begin{aligned} & 154.2 \\ & 189.4 \end{aligned}$ | 37.5 | 8 | 100 | 80 | 60 | M |  | $\begin{aligned} & 106.5 \\ & 141.7 \end{aligned}$ | 14.5 | 15 | 12.5 | 10 | 13.5 | 10 | 8 | M6 | $\begin{gathered} \hline \text { G-PT } \\ 1 / 8 \\ \hline \end{gathered}$ |
| SMR 55 E SMR 55 LE | 70 | 140 | $\begin{aligned} & 185.4 \\ & 235.4 \end{aligned}$ | 43.5 | 10 | 116 | 95 | 70 | M |  | $\begin{aligned} & 129.5 \\ & 179.5 \end{aligned}$ | 17.5 | 18 | 15.5 | 11 | 13.5 | 12 | 7.95 | M6 | $\begin{gathered} \text { G-PT } \\ 1 / 8 \end{gathered}$ |
| SMR 65 E SMR 65 LE | 90 | 170 | $\begin{aligned} & 238.4 \\ & 300.4 \end{aligned}$ | 53.5 | 12 |  | 110 | 82 | M |  | $\begin{aligned} & 168 \\ & 230 \end{aligned}$ | 19.5 |  | 26 | 16.5 | 13.5 | 12 | 8 | M6 | $\begin{gathered} \hline \text { G-PT } \\ 1 / 8 \\ \hline \end{gathered}$ |

Note ${ }^{*}$ : Single: Single carriage/ Double: Double carriages closely contacting with each other.



Unit: mm

|  | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\begin{array}{\|c\|} \hline \text { Length } \\ \mathrm{L} \end{array}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | s | $\ell$ | $\mathrm{L}_{1}$ | T | N | G | K | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease <br> Nipple |
| SMR 25 S <br> SMR 25 LS | 40 | 48 | $\begin{gathered} 97.5 \\ 115.5 \\ \hline \end{gathered}$ | 12.5 | 4.8 | 35 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M6 | 10.5 | $\begin{aligned} & 65.5 \\ & 83.5 \end{aligned}$ | 9.5 | 10 | 12 | 6.6 | 6.5 | M6 | G-M6 |
| SMR 30 S SMR 30 LS | 45 | 60 | $\begin{aligned} & 112.4 \\ & 135.2 \end{aligned}$ | 16 | 6 | 40 | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | M8 | 12 | $\begin{aligned} & 75.9 \\ & 98.7 \end{aligned}$ | 10 | 10 | 12 | 8 | 7 | M6 | G-M6 |
| SMR 35 S <br> SMR 35 LS | 55 | 70 | $\begin{aligned} & 125.3 \\ & 153.5 \\ & \hline \end{aligned}$ | 18 | 6.5 | 50 | $\begin{aligned} & 50 \\ & 72 \\ & \hline \end{aligned}$ | M8 | 14 | $\begin{gathered} 82.3 \\ 110.5 \\ \hline \end{gathered}$ | 12 | 15 | 12 | 8 | 7 | M6 | G-M6 |
| SMR 45 S <br> SMR 45 LS | 70 | 86 | $\begin{aligned} & 154.2 \\ & 189.4 \end{aligned}$ | 20.5 | 8 | 60 | $\begin{aligned} & 60 \\ & 80 \end{aligned}$ | M10 | 19 | $\begin{aligned} & 106.5 \\ & 141.7 \end{aligned}$ | 17 | 20 | 13.5 | 10 | 8 | M6 | G-PT 1/8 |
| SMR 55 S <br> SMR 55 LS | 80 | 100 | $\begin{aligned} & 185.4 \\ & 235.4 \end{aligned}$ | 23.5 | 10 | 75 | $\begin{aligned} & 75 \\ & 95 \\ & \hline \end{aligned}$ | M12 | 19 | $\begin{aligned} & 129.5 \\ & 179.5 \\ & \hline \end{aligned}$ | 18 | 21 | 13.5 | 12 | 7.95 | M6 | G-PT 1/8 |
| $\begin{aligned} & \text { SMR } 65 \text { S } \\ & \text { SMR } 65 \text { LS } \end{aligned}$ | 90 | 126 | $\begin{aligned} & 238.4 \\ & 300.4 \\ & \hline \end{aligned}$ | 31.5 | 12 | 76 | $\begin{gathered} 70 \\ 120 \end{gathered}$ | M16 | 20 | $\begin{aligned} & 168 \\ & 230 \end{aligned}$ | 19.5 | 16.5 | 13.5 | 12 | 8 | M6 | G-PT 1/8 |

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width $\mathrm{W}_{1}$ | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | Pitch P | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $D \times h \times d$ | $\begin{gathered} \text { Dynamic } \\ \text { c } \\ \text { kN } \end{gathered}$ | Static C。 kN | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} \mathrm{M}_{\mathrm{R}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | Carriage kg | $\begin{aligned} & \text { Rail } \\ & \mathrm{kg} / \mathrm{m} \end{aligned}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double ${ }^{*}$ |  |  |  |
| SMR 25 S <br> SMR 25 LS | 23 | 23.5 | 30 | 20 | $11 \times 9 \times 7$ | $\begin{aligned} & 27.4 \\ & 33.1 \\ & \hline \end{aligned}$ | $\begin{aligned} & 57.4 \\ & 73.3 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 3.63 \\ & 5.49 \end{aligned}$ | $\begin{aligned} & 0.63 \\ & 1.01 \end{aligned}$ | $\begin{aligned} & 3.63 \\ & 5.49 \end{aligned}$ | $\begin{aligned} & 0.66 \\ & 0.84 \end{aligned}$ | $\begin{aligned} & 0.65 \\ & 0.85 \end{aligned}$ | 3.5 |
| SMR 30 S <br> SMR 30 LS | 28 | 27.5 | 40 | 20 | 14×12×9 | $\begin{aligned} & 39.5 \\ & 49.4 \end{aligned}$ | $\begin{gathered} 82.7 \\ 110.3 \end{gathered}$ | $\begin{aligned} & 1.01 \\ & 1.78 \end{aligned}$ | $\begin{aligned} & 5.90 \\ & 9.60 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.01 \\ & 1.78 \end{aligned}$ | $\begin{aligned} & 5.90 \\ & 9.60 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.15 \\ & 1.53 \end{aligned}$ | $\begin{gathered} 1 \\ 1.22 \\ \hline \end{gathered}$ | 5 |
| SMR 35 S <br> SMR 35 LS | 34 | 30.5 | 40 | 20 | $14 \times 12 \times 9$ | $\begin{aligned} & 55.6 \\ & 69.6 \end{aligned}$ | $\begin{aligned} & 117.0 \\ & 156.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.63 \\ & 2.86 \\ & \hline \end{aligned}$ | $\begin{gathered} 9.59 \\ 15.57 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.63 \\ & 2.86 \end{aligned}$ | $\begin{gathered} 9.59 \\ 15.57 \\ \hline \end{gathered}$ | $\begin{aligned} & 1.98 \\ & 2.63 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 2.15 \end{aligned}$ | 7 |
| SMR 45 S SMR 45 LS | 45 | 37 | 52.5 | 22.5 | $20 \times 17 \times 14$ | $\begin{gathered} 89.3 \\ 110.6 \end{gathered}$ | $\begin{aligned} & 184.1 \\ & 242.2 \end{aligned}$ | $\begin{gathered} 3.27 \\ 5.6 \end{gathered}$ | $\begin{aligned} & 18.48 \\ & 29.56 \end{aligned}$ | $\begin{gathered} 3.27 \\ 5.6 \end{gathered}$ | $\begin{aligned} & 18.48 \\ & 29.56 \end{aligned}$ | $\begin{gathered} 4.18 \\ 5.5 \end{gathered}$ | $\begin{aligned} & 3.2 \\ & 4.1 \end{aligned}$ | 11.2 |
| $\begin{aligned} & \text { SMR } 55 \text { S } \\ & \text { SMR } 55 \text { LS } \end{aligned}$ | 53 | 43 | 60 | 30 | $23 \times 20 \times 16$ | $\begin{aligned} & 127.8 \\ & 163.2 \end{aligned}$ | $\begin{aligned} & 256.5 \\ & 351.0 \end{aligned}$ | $\begin{gathered} \hline 5.51 \\ 10.16 \end{gathered}$ | $\begin{aligned} & 30.89 \\ & 53.02 \end{aligned}$ | $\begin{gathered} 5.51 \\ 10.16 \end{gathered}$ | $\begin{aligned} & 30.89 \\ & 53.02 \end{aligned}$ | $\begin{aligned} & 6.96 \\ & 9.52 \end{aligned}$ | $\begin{gathered} 5.1 \\ 7 \end{gathered}$ | 15.6 |
| SMR 65 S <br> SMR 65 LS | 63 | 52 | 75 | 35 | $26 \times 22 \times 18$ | $\begin{aligned} & 205.1 \\ & 263.5 \end{aligned}$ | $\begin{aligned} & 422.7 \\ & 583.7 \end{aligned}$ | $\begin{gathered} 9.94 \\ 21.43 \end{gathered}$ | $\begin{gathered} 50.75 \\ 111.99 \end{gathered}$ | $\begin{gathered} 9.94 \\ 21.43 \end{gathered}$ | $\begin{gathered} 50.75 \\ 111.99 \end{gathered}$ | $\begin{aligned} & 12.52 \\ & 18.73 \end{aligned}$ | $\begin{aligned} & 10.1 \\ & 13.3 \end{aligned}$ | 22.4 |

## Ball Chain Heavy Load Type, SME Series

## Construction



## Characteristics

The ball chain type linear guideway, SME series, equip with the ball chain design can make the movement smooth and stability, especially suit for the requests of high speed, high accuracy.

## The Optimization Design of Four Directional Load

Through the structure stress analysis, SME series have four trains of balls are designed to a circular contact angle of $45^{\circ}$ and the section design for high rigidity. Except for bearing heavier loads in radial, reversed radial and lateral directions, a sufficient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

## Self Alignment Capability

The self adjustment is performed spontaneously as the design of face-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, and which results in precise and smooth linear motion.

## Ball Chain Design, Smooth Movement

The concise and smooth design of circulating system with strengthened synthetic resin accessories and cooperating with the ball chain, these can avoid interference between balls and make the balls more stability during passing in and out the load district. Besides, the ball chain can keep the ball move in a line and improve the movement most smooth substantially.


Rolling resistance test

## Low Noise, Good Lubricant Effect

The ball chain design avoids interference between balls, lowers the operating noise, and can keep the lubricant between the balls and ball chain effectively. Moreover, improve the movement smooth and service life of the whole, can meet high accuracy, high reliability and smooth and stability.


Noise level comparison test

## Carriage Type

Heavy Load


This type offers the installation either from top or bottom side of carriage


All dimensions are same as SME-EA except the mounting hole dimensions of carriage are different and the height is lower, which do not change the basic loading rating


Square type with smaller width and can be installed from top side of carriage.


All dimensions are same as SME-SA except the mounting hole dimensions of carriage are different and the height is lower, which do not change the basic loading rating.

Ultra Heavy Load


All dimensions are same as SME-EA except the length is longer, which makes it more rigid.


All dimensions are same as SME-SA except the length is longer, which makes it more rigid.


All dimensions are same as SME-EB except the length is longer, which makes it more rigid.

SME-LSB / SME-LSV Type


All dimensions are same as SME-SB and SMESV except the length is longer, which makes it more rigid.

## Rail Type

Counter Bore(R type)


Tapped Hole(T type)


## Description of Specification

Non-interchangeable Type

## SME 25 EA 2 SS FO

Series: SME
Size : 15, 20, 25, 30, 35, 45
Carriage type : Heavy load
EA : Flange type, mounting either from top or bottom
EB : Compact flange type, mounting either from top or bottom (Size only 15, 20, 25)

SA : Square type
SB/SV : Compact square type
Ultra heavy load
LEA : Flange type, mounting either from top or bottom
LEB : Compact flange type, mounting either from top or bottom (Size only 15, 20, 25)

LSA: Square type
LSB/LSV : Compact square type
Number of carriages per rail : 1, 2, 3 ...
Dust protection option of carriage :
No symbol, UU, SS, ZZ, DD, KK (refer to Dust Proof [B1-242])
Preload : FC (Light Preload), F0 (Medium preload), F1 (Heavy preload)
Code of special carriage : No symbol, A, B, ...
Rail type : R (Counter-bore type), T (Tapped hole type)
Rail length (mm)
Rail hole pitch from start side (E1, see Fig.7)
Rail hole pitch to the end side (E2, see Fig.7)
Accuracy grade : N, H, P, SP, UP
Code of special rail : No symbol, A, B ...
Dust protection option of rail : No symbol, /CC, /CD, /MC, /MD ...
(refer to Code of Contaminaiton for Rail [B1-243])
Number of rails per axis : No symbol, II, III, IV ...


B1-170

Interchangeable Type
Code of Carriage
SME 25 EA SS FC H
Series: SME
Size : 15, 20, 25, 30, 35, 45
Carriage type : Heavy load
EA : Flange type, mounting either rom top or bottom
EB : Compact flange type, mounting either from top or bottom(Size only 15, 20, 25)
SA : Square type
SB/SV : Compact square type
Ultra heavy load
LEA : Flange type, mounting either from top or bottom
LEB : Compact flange type, mounting either from top or bottom(Size only 15, 20, 25)
LSA : Square type
LSB/LSV : Compact square type
Dust protection option of carriage : No symbol, UU, SS, ZZ, DD, KK (refer to Dust Proof [B1-242])
Preload : FC (Light Preload), F0 (Medium preload)
Accuracy grade : N, H, P
Code of special carriage : No symbol, A, B, ..

Code of Rail


## Accuracy Grade



Table 8 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | N | H | $\mathbf{P}$ | SP | UP |
| 0 | 315 | 9 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 11 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 13 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 16 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 18 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 20 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 22 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 25 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 28 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 30 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 32 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 33 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 34 | 26 | 18 | 12 | 6 |

Non-Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P | Super Precision SP | Ulitra Precision UP |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} 0 \\ -0.015 \end{gathered}$ | $\begin{gathered} 0 \\ -0.008 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 | 0.004 | 0.003 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface B | $\Delta \mathrm{D}$ (see the Table 8) |  |  |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.01 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.01 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 8) |  |  |  |  |
| 45 | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.03 \\ \hline \end{gathered}$ | $\begin{gathered} 0 \\ -0.02 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.015 | 0.007 | 0.005 | 0.003 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ | $\begin{gathered} \hline 0 \\ -0.02 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 | 0.007 | 0.005 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 8) |  |  |  |  |

Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 8) |  |  |
| $\begin{aligned} & 25 \\ & 30 \\ & 35 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 8) |  |  |
| 45 | Tolerance for height H | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.03 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.05$ | $\begin{gathered} \hline 0 \\ -0.05 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.02 | 0.01 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 8) |  |  |
|  | Running parallelism of surface $D$ with surface B | $\Delta \mathrm{D}$ (see the Table 8) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Heavy preload (F1) |
| SME15 | 0.01~0.03C | 0.04~0.06C | - |
| SME20 |  |  | 0.07~0.09C |
| SME25 |  |  |  |
| SME30 |  |  |  |
| SME35 |  |  |  |
| SME45 |  |  |  |
| SME15L | 0.01~0.03C | 0.04~0.06C | 0.07~0.09C |
| SME20L |  |  |  |
| SME25L |  |  |  |
| SME30L |  |  |  |
| SME35L |  |  |  |
| SME45L |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation

Unit: mm

| Model <br> No. | $r_{1}$ <br> (max.) | $r_{2}$ <br> $($ max. $)$ | $h_{1}$ | $h_{2}$ | $\mathrm{H}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 5}$ | 0.5 | 0.5 | 2.5 | 5 | 3.5 |
| 20 | 0.5 | 0.5 | 3.5 | 5 | 4.7 |
| 25 | 1 | 1 | 5 | 6 | 5.8 |
| 30 | 1 | 1 | 5 | 7 | 7.5 |
| 35 | 1 | 1 | 6 | 8 | 8 |
| 45 | 1 | 1 | 8 | 8 | 10 |

## Dimensional Tolerance of Mounting Surface

SME with the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $\mathrm{e}_{1}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |  |
| 15 | 25 | 18 | - |  |
| 20 | 25 | 20 | 18 |  |
| 25 | 30 | 22 | 20 |  |
| 30 | 40 | 30 | 27 |  |
| 35 | 50 | 35 | 30 |  |
| 45 | 60 | 40 | 35 |  |

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| $\mathbf{1 5}$ | 130 | 85 | - |
| $\mathbf{2 0}$ | 130 | 85 | 50 |
| $\mathbf{2 5}$ | 130 | 85 | 70 |
| $\mathbf{3 0}$ | 170 | 110 | 90 |
| $\mathbf{3 5}$ | 210 | 150 | 120 |
| $\mathbf{4 5}$ | 250 | 170 | 140 |

[^2]
## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ :Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E:$ Distance from the center of the last hole to the edge ( mm )

| Model No. | Standard Pitch <br> $(P)$ | Standard ( $\left.\mathrm{E}_{\text {std }}\right)$ | Minimum ( $\left.\mathrm{E}_{\text {min }}\right)$ | Max ( $\mathrm{L}_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| SME 15 | 60 | 20 | 5 | 4000 |
| SME 20 | 60 | 20 | 6 | 4000 |
| SME 25 | 60 | 20 | 7 | 4000 |
| SME 30 | 80 | 20 | 8 | 4000 |
| SME 35 | 80 | 20 | 8 | 4000 |
| SME 45 | 105 | 22.5 | 11 | 4000 |

## Tapped Hole Rail Dimensions



| Rail Model | S | h(mm) |
| :---: | :---: | :---: |
| SME 15 T | M5 | 8 |
| SME 20 T | M6 | 10 |
| SME 25 T | M6 | 12 |
| SME 30 T | M8 | 15 |
| SME 35 T | M8 | 17 |
| SME 45 T | M12 | 24 |

## Dimensions of SME-EA / SME-LEA



Unit: mm

| Model No . | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | $\begin{gathered} \text { Width } \\ \mathrm{w} \end{gathered}$ | Length $\mathrm{L}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $\mathrm{L}_{1}$ | T | T ${ }_{1}$ | N | G | K | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease <br> Nipple |
| SME 15 EA SME 15 LEA | 24 | 47 | $\begin{aligned} & 64.4 \\ & 79.4 \end{aligned}$ | 16 | 3.5 | 38 | 30 | M5×8 | $\begin{aligned} & 48 \\ & 63 \end{aligned}$ | 5.5 | 8 | 5 | 5.5 | 2.7 | - | M4 | G-M4 |
| SME 20 EA SME 20 LEA | 30 | 63 | $\begin{aligned} & 78.5 \\ & 97.5 \end{aligned}$ | 21.5 | 4.7 | 53 | 40 | M6×10 | $\begin{aligned} & 58.3 \\ & 77.3 \end{aligned}$ | 7 | 10 | 8 | 12 | 3.7 | - | M4 | G-M6 |
| $\begin{aligned} & \text { SME } 25 \text { EA } \\ & \text { SME } 25 \text { LEA } \end{aligned}$ | 36 | 70 | $\begin{gathered} 92 \\ 109 \end{gathered}$ | 23.5 | 5.8 | 57 | 45 | M8×13 | $\begin{aligned} & 71 \\ & 88 \\ & \hline \end{aligned}$ | 7 | 13 | 10 | 12 | 4 | - | M4 | G-M6 |
| SME 30 EA SME 30 LEA | 42 | 90 | $\begin{aligned} & 108 \\ & 133 \end{aligned}$ | 31 | 7.5 | 72 | 52 | M10×15 | $\begin{gathered} 80 \\ 105 \end{gathered}$ | 12 | 15 | 8 | 12 | 6.5 | 5.4 | M6 | G-M6 |
| SME 35 EA SME 35 LEA | 48 | 100 | $\begin{aligned} & 120.6 \\ & 150.6 \\ & \hline \end{aligned}$ | 33 | 8 | 82 | 62 | M10×15 | $\begin{gathered} 90 \\ 120 \\ \hline \end{gathered}$ | 12 | 15 | 8 | 12 | 6.5 | 6 | M6 | G-M6 |
| SME 45 EA SME 45 LEA | 60 | 120 | $\begin{gathered} 140 \\ 174.5 \\ \hline \end{gathered}$ | 37.5 | 10 | 100 | 80 | M12×18 | $\begin{gathered} 106 \\ 140.5 \\ \hline \end{gathered}$ | 12 | 18 | 10 | 13.5 | 8.5 | 6.1 | M6 | $\begin{gathered} \text { G-PT } \\ 1 / 8 \\ \hline \end{gathered}$ |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


| Model No. | Bolt Size |  |
| :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ |
| SME 15 | M5 | M4 |
| SME 20 | M6 | M5 |
| SME 25 | M8 | M6 |
| SME 30 | M10 | M8 |
| SME 35 | M10 | M8 |
| SME 45 | M12 | M10 |



Unit: mm

| Model No . | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width W 1 | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{gathered} \text { Pitch } \\ \text { P } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | DynamicCkN | Static C。 kN | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{R} \\ k N-m \end{gathered}$ | Carriage kg | $\begin{aligned} & \text { Rail } \\ & \mathrm{kg} / \mathrm{m} \end{aligned}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double* |  |  |  |
| SME 15 EA <br> SME 15 LEA | 15 | 13 | 60 | 20 | $7.5 \times 5.8 \times 4.5$ | $\begin{aligned} & 12.5 \\ & 15.4 \end{aligned}$ | $\begin{aligned} & 20.2 \\ & 27.5 \end{aligned}$ | $\begin{aligned} & 0.14 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 0.14 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.21 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.29 \end{aligned}$ | 1.4 |
| SME 20 <br> SME 20 | 20 | 15.5 | 60 | 20 | $9.5 \times 8.5 \times 6$ | $25.3$ | $43.6$ | $\begin{aligned} & 0.27 \\ & 0.49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 2.24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 2.24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.44 \\ & \hline \end{aligned}$ | $0.62$ | 2.3 |
| SME 25 EA SME 25 LEA | 23 | 18 | 60 | 20 | $11 \times 9 \times 7$ | $33.0$ |  | $\begin{aligned} & 0.45 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 2.14 \\ & 3.20 \end{aligned}$ | $0.71$ | $\begin{aligned} & 2.14 \\ & 3.20 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.66 \end{aligned}$ | $0.89$ | 3.2 |
| SME 30 EA <br> SME 30 LEA | 28 | 23 | 80 | 20 | $14 \times 12 \times 9$ | $47.0$ | $76.5$ | $\begin{aligned} & 0.68 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 3.37 \\ & 5.32 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 1.11 \end{aligned}$ | $\begin{aligned} & 3.37 \\ & 5.32 \end{aligned}$ | $\begin{aligned} & 0.83 \\ & 1.07 \end{aligned}$ | $\begin{aligned} & 1.18 \\ & 1.54 \end{aligned}$ | 4.5 |
| SME 35 EA <br> SME 35 LEA | 34 | 26 | 80 | 20 | $14 \times 12$ | $\begin{aligned} & 54.7 \\ & 67.6 \end{aligned}$ | $\begin{gathered} \hline 81.0 \\ 109.9 \end{gathered}$ | $\begin{aligned} & 1.07 \\ & 1.92 \end{aligned}$ | $\begin{aligned} & 5.25 \\ & 8.75 \end{aligned}$ | $\begin{aligned} & 1.07 \\ & 1.92 \end{aligned}$ | $\begin{aligned} & 5.25 \\ & 8.75 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 1.91 \end{aligned}$ | $\begin{aligned} & 1.74 \\ & 2.28 \end{aligned}$ | 6.2 |
| SME 45 EA SME 45 LEA | 45 | 32 | 105 | 22.5 | $20 \times 17 \times 14$ | $\begin{aligned} & 72.7 \\ & 90.0 \end{aligned}$ | $\begin{aligned} & 105.8 \\ & 143.6 \end{aligned}$ | $\begin{aligned} & 1.61 \\ & 2.88 \end{aligned}$ | $\begin{gathered} 7.82 \\ 13.08 \end{gathered}$ | $\begin{aligned} & 1.61 \\ & 2.88 \end{aligned}$ | $\begin{gathered} 7.82 \\ 13.08 \end{gathered}$ | $\begin{aligned} & 2.41 \\ & 3.27 \end{aligned}$ | $\begin{array}{r} 3.22 \\ 4.21 \\ \hline \end{array}$ | 10.5 |



Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width <br> W | $\begin{gathered} \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | $\mathrm{T}_{1}$ | N | G | K | $\mathrm{e}_{1}$ | $\mathrm{G}_{1}$ | Grease <br> Nipple |
| SME 15 EB SME 15 LEB | 24 | 52 | $\begin{aligned} & 64.4 \\ & 79.4 \end{aligned}$ | 18.5 | 3.5 | 41 | $\begin{aligned} & 26 \\ & 36 \end{aligned}$ | M5×8 | $\begin{aligned} & 48 \\ & 63 \\ & \hline \end{aligned}$ | 5.5 | 8 | 5 | 5.5 | 2.7 | - | M4 | G-M4 |
| SME 20 EB <br> SME 20 LEB | 28 | 59 | $\begin{aligned} & 78.5 \\ & 97.5 \end{aligned}$ | 19.5 | 4.7 | 49 | $\begin{aligned} & 32 \\ & 45 \end{aligned}$ | M6×8 | $\begin{aligned} & 58.3 \\ & 77.3 \end{aligned}$ | 7.0 | 8 | 6.0 | 12 | 3.7 | - | M4 | G-M6 |
| SME 25 EB <br> SME 25 LEB | 33 | 73 | $\begin{gathered} 92 \\ 109 \end{gathered}$ | 25 | 5.8 | 60 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M8×10 | $\begin{aligned} & 71 \\ & 88 \end{aligned}$ | 7.0 | 10 | 7.0 | 12 | 4 | - | M4 | G-M6 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


| Model No . | Rail dimensi |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c} \hline \text { Width } \\ \mathrm{w}_{1} \end{array}$ | Height $H_{1}$ | $\begin{gathered} \text { Pitch } \\ \text { P } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | DynamicCkN | Static <br> C <br> kN | $\begin{gathered} \mathrm{M}_{\mathrm{p}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{R} \\ k N-m \end{gathered}$ | Carriage kg | $\begin{gathered} \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{gathered}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double ${ }^{*}$ |  |  |  |
| SME 15 EB SME 15 LEB | 15 | 13 | 60 | 20 | $7.5 \times 5.8 \times 4.5$ | $\begin{aligned} & 12.5 \\ & 15.4 \end{aligned}$ | $\begin{aligned} & 20.2 \\ & 27.5 \end{aligned}$ | $\begin{aligned} & \hline 0.14 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & \hline 0.69 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 0.14 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.69 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.21 \end{aligned}$ | $\begin{aligned} & 0.21 \\ & 0.27 \end{aligned}$ | 1.4 |
| SME 20 EB <br> SME 20 LEB | 20 | 15.5 | 60 | 20 | $9.5 \times 8.5 \times 6$ | $\begin{aligned} & 20.4 \\ & 25.3 \end{aligned}$ | $\begin{aligned} & 32.1 \\ & 43.6 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 2.24 \end{aligned}$ | $\begin{aligned} & 0.27 \\ & 0.49 \end{aligned}$ | $\begin{aligned} & 1.34 \\ & 2.24 \end{aligned}$ | $\begin{aligned} & 0.33 \\ & 0.44 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.55 \end{aligned}$ | 2.3 |
| SME 25 EB <br> SME 25 LEB | 23 | 18 | 60 | 20 | $11 \times 9 \times 7$ | $\begin{aligned} & 28.3 \\ & 33.0 \end{aligned}$ | $\begin{aligned} & 44.3 \\ & 56.1 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 2.14 \\ & 3.20 \end{aligned}$ | $\begin{aligned} & 0.45 \\ & 0.71 \end{aligned}$ | $\begin{aligned} & 2.14 \\ & 3.20 \end{aligned}$ | $\begin{aligned} & 0.52 \\ & 0.66 \end{aligned}$ | $\begin{aligned} & 0.42 \\ & 0.65 \end{aligned}$ | 3.2 |



Unit: mm

| Model No . | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\underset{L}{\text { Length }}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $\mathrm{L}_{1}$ | T | N | G | K | $\mathrm{e}_{1}$ | G | Grease <br> Nipple |
| SME 15 SA <br> SME 15 LSA | 28 | 34 | $\begin{aligned} & 64.4 \\ & 79.4 \end{aligned}$ | 9.5 | 3.5 | 26 | 26 | M4×7.5 | $\begin{aligned} & 48 \\ & 63 \end{aligned}$ | 6 | 9 | 5.5 | 2.7 | - | M4 | G-M4 |
| SME 20 SA <br> SME 20 LSA | 30 | 44 | $\begin{aligned} & 78.5 \\ & 97.5 \end{aligned}$ | 12 | 4.7 | 32 | $\begin{aligned} & 36 \\ & 50 \end{aligned}$ | M5×7 | $\begin{aligned} & 58.3 \\ & 77.3 \end{aligned}$ | 6 | 8 | 12 | 3.7 | - | M4 | G-M6 |
| SME 25 SA SME 25 LSA | 40 | 48 | $\begin{gathered} 92 \\ 109 \end{gathered}$ | 12.5 | 5.8 | 35 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M6×12 | $\begin{aligned} & 71 \\ & 88 \end{aligned}$ | 8 | 14 | 12 | 4 | - | M4 | G-M6 |
| $\begin{aligned} & \text { SME } 30 \text { SA } \\ & \text { SME } 30 \text { LSA } \end{aligned}$ | 45 | 60 | $\begin{aligned} & 108 \\ & 133 \end{aligned}$ | 16 | 7.5 | 40 | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | M8×12 | $\begin{gathered} 80 \\ 105 \end{gathered}$ | 8 | 11 | 12 | 6.5 | 5.4 | M6 | G-M6 |
| SME 35 SA SME 35 LSA | 55 | 70 | $\begin{aligned} & 120.6 \\ & 150.6 \end{aligned}$ | 18 | 8 | 50 | $\begin{aligned} & 50 \\ & 72 \end{aligned}$ | M8×14 | $\begin{gathered} 90 \\ 120 \end{gathered}$ | 11 | 15 | 12 | 6.5 | 6 | M6 | G-M6 |
| SME 45 SA <br> SME 45 LSA | 70 | 86 | $\begin{gathered} 140 \\ 174.5 \end{gathered}$ | 20.5 | 10 | 60 | $\begin{aligned} & 60 \\ & 80 \end{aligned}$ | M10×20 | $\begin{gathered} 106 \\ 140.5 \end{gathered}$ | 16 | 20 | 13.5 | 8.5 | 6.1 | M6 | G-PT 1/8 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.

Note ${ }^{*}$ : Single: Single carriage/ Double: Double carriages closely contacting with each other.


Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \mathrm{H} \end{gathered}$ | Width w | $\underset{\mathrm{L}}{\text { Length }}$ | $\mathrm{w}_{2}$ | $\mathrm{H}_{2}$ | B | c | $5 \times 1$ | $\mathrm{L}_{1}$ | T | N | G | к | $e_{1}$ | $\mathrm{G}_{1}$ | Grease Nipple |
| SME 15 SB SME 15 LSB | 24 | 34 | $\begin{aligned} & 64.4 \\ & 79.4 \end{aligned}$ | 9.5 | 3.5 | 26 | $\begin{aligned} & 26 \\ & 34 \end{aligned}$ | M4×5 | $\begin{aligned} & 48 \\ & 63 \end{aligned}$ | 6 | 5 | 5.5 | 2.7 | - | M4 | G-M4 |
| $\begin{aligned} & \text { SME } 20 \text { SB } \\ & \text { SME } 20 \text { LSB } \end{aligned}$ | 28 | 42 | $\begin{aligned} & 78.5 \\ & 97.5 \end{aligned}$ | 11 | 4.7 | 32 | $\begin{aligned} & 32 \\ & 45 \end{aligned}$ | M5×5.5 | $\begin{aligned} & 58.3 \\ & 77.3 \end{aligned}$ | 6 | 6 | 12 | 3.7 | - | M4 | G-M6 |
| $\begin{aligned} & \text { SME } 25 \text { SB } \\ & \text { SME } 25 \text { LSB } \end{aligned}$ | 33 | 48 | $\begin{gathered} 92 \\ 109 \end{gathered}$ | 12.5 | 5.8 | 35 | $\begin{aligned} & 35 \\ & 50 \end{aligned}$ | M6×7 | $\begin{aligned} & 71 \\ & 88 \end{aligned}$ | 8 | 7 | 12 | 4 | - | M4 | G-M6 |
| $\begin{aligned} & \text { SME } 25 \text { SV } \\ & \text { SME } 25 \text { LSV } \\ & \hline \end{aligned}$ | 36 | 48 | $\begin{gathered} 92 \\ 109 \\ \hline \end{gathered}$ | 12.5 | 5.8 | 35 | $\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$ | M6×9 | $\begin{aligned} & 71 \\ & 88 \end{aligned}$ | 8 | 10 | 12 | 4 | - | M4 | G-M6 |
| $\begin{aligned} & \text { SME } 30 \text { SB } \\ & \text { SME } 30 \text { LSB } \end{aligned}$ | 42 | 60 | $\begin{aligned} & 107.6 \\ & 132.6 \\ & \hline \end{aligned}$ | 16 | 7.5 | 40 | $\begin{aligned} & 40 \\ & 60 \end{aligned}$ | M8×10 | $\begin{gathered} 80 \\ 105 \\ \hline \end{gathered}$ | 8 | 8 | 12 | 6.5 | 5.4 | M6 | G-M6 |
| $\begin{aligned} & \text { SME } 35 \text { SB } \\ & \text { SME } 35 \text { LSB } \end{aligned}$ | 48 | 70 | $\begin{aligned} & 120.6 \\ & 150.6 \\ & \hline \end{aligned}$ | 18 | 8 | 50 | $\begin{aligned} & 50 \\ & 72 \end{aligned}$ | M8×11 | $\begin{gathered} 90 \\ 120 \end{gathered}$ | 11 | 8 | 12 | 6.5 | 6 | M6 | G-M6 |
| $\begin{aligned} & \text { SME } 45 \text { SB } \\ & \text { SME } 45 \text { LSB } \\ & \hline \end{aligned}$ | 60 | 86 | $\begin{gathered} 140 \\ 174.5 \\ \hline \end{gathered}$ | 20.5 | 10 | 60 | $\begin{aligned} & 60 \\ & 80 \\ & \hline \end{aligned}$ | M10×16 | $\begin{gathered} 106 \\ 140.5 \\ \hline \end{gathered}$ | 16 | 10 | 13.5 | 8.5 | 6.1 | M6 | G-PT 1/8 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.

Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other

## Ball Chain Heavy Load Type, SMA Series

## Construction



## Characteristics

The trains of balls are designed to a contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, SMA series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion

The design of lubrication route makes the lubricant evenly distribute in each circulation loop. Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## High Rigidity, Four-way Equal Load

Compact design of the carriage with the four trains of balls are allocated to a circular contact angle at $45^{\circ}$, thus each train of balls can take up an equal rated load in all four directions. Moreover, su cient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

## Self Alignment Capability

With self alignment capability, it can absorb the installation error. The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, which results in precise and smooth linear motion

## nterchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient.
Moreover, this is also beneficial for shortening the delivery time.

## Use One Rail At The Same Time

MSA and SMA can be used simultaneously with the same rail and provides a variety of product selectivity.

## Ball Chain Type Design, Smooth Movement

The ball chain type makes the balls evenly arranged and aligned, while avoiding collisions between the balls. And use strengthened synthetic resin and keep the balls move in a line. Moreover, improve the movement smooth and make the balls more stability during passing in and out at the load district.

## Good Lubricant Effect

The ball chain design and strengthened can keep the oil film between the balls and the ball chain lubricant effectively. Moreover, improve the lubrication effect and service life of the linear guideway, can meet the high accuracy, high reliability and stability, especially suit for the equipment needs of high speed.

## Carriage Type

Heavy Load Type


## Rail Type

Counter Bore (R type)


Tapped Hole (T type)


## Description of Specification

Non-Interchangeable Type

## SMA 25 A 2 SS FO +R 1200-20 /40 P

1, 2, 3 ..
Dust protection option of carriage :
No symbol, UU, SS, ZZ, DD, KK, LL, RR

## Preload : FC (Light preload)

F0 (Medium preload) , F1 (Heavy preload)
Code of special carriage :
No symbol, A, B ...
Rail type :
R (Counter-bore type), T (Tapped hole type)
Rail length (mm)
Rail hole pitch from start side (E1, see Fig.1)
Rail hole pitch to the end side (E2, see Fig. 1
Accuracy grade : N, H, P
Code of special rail : No symbol, A, B ...
Dust protection option of rail
No symbol, /CC, /MC, /MD
(refer to Code of Contamination for Rail [B1-243])
Number of rails per axis :
No symbol, II, III, IV ...

B1-191


Interchangeable Type
Code of Carriage


Dust protection option of carriage
No symbol, UU, SS, ZZ, DD, KK, LL, RR
Preload : FC (Light preload), F0 (Medium preload)
Accuracy grade : N, H, P
Code of special carriage : No symbol, A, B, ..

Code of Rail


## Accuracy Grade



Table 1 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values $(\mu \mathrm{m})$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | N | $\mathbf{H}$ | P |  |
| 0 | 315 | 9 | 6 | 3 |  |
| 315 | 400 | 11 | 8 | 4 |  |
| 400 | 500 | 13 | 9 | 5 |  |
| 500 | 630 | 16 | 11 | 6 |  |
| 630 | 800 | 18 | 12 | 7 |  |
| 800 | 1000 | 20 | 14 | 8 |  |
| 1000 | 1250 | 22 | 16 | 10 |  |
| 1250 | 1600 | 25 | 20 | 11 |  |
| 1600 | 2000 | 28 | 22 | 13 |  |
| 2000 | 2500 | 30 | 24 | 15 |  |
| 2500 | 3000 | 32 | 26 | 16 |  |
| 3000 | 3500 | 33 |  | 17 |  |
| 3500 | 4000 | 34 |  | 18 |  |

Non-Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta \mathrm{H}$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta \mathrm{C}$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |
| 25 | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta C$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |

Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | $\begin{gathered} \hline \text { High } \\ \hline \end{gathered}$ | Precision P |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta C$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |
| 25 | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface $A$ | $\Delta C$ (see the Table 1) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 1) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Heavy preload (F1) |
| SMA15 |  |  | - |
| SMA20 | $0 \sim 0.02 C$ | $0.03 \sim 0.05 C$ | $0.05 \sim 0.08 C$ |
| SMA25 |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.

## The Shoulder Height and Corner Radius for Installation



## Dimensional Tolerance of Mounting Surface

With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $e_{1}$ )


| Model No. |  | Preload Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 $\mu m$ |  |
| 15 | 25 | 18 | - |  |
| 20 | 25 | 20 | 18 |  |
| 25 | 30 | 22 | 20 |  |

Unit: $\mu m$

Level difference between two axes ( $\mathrm{e}_{2}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |  |  |
| $\mathbf{1 5}$ | 130 | 85 | - |  |  |
| 20 | 130 | 85 | 50 |  |  |
| 25 | 130 | 85 | 70 |  |  |
|  |  |  |  |  |  |

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ : Total Length of rail (mm)
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E:$ Distance from the center of the last hole to the edge ( mm )
Unit $m m$

| Model No. | Standard Pitch $(P)$ | Standard $\left(\mathrm{E}_{\text {std }}\right)$ | Minimum $\left(\mathbf{E}_{\text {min }}\right)$ | Max $\left(\mathrm{L}_{0}\right.$ max. $)$ |
| :---: | :---: | :---: | :---: | :---: |
| SMA 15 | 60 | 20 | 5 | 4000 |
| SMA 20 | 60 | 20 | 6 | 4000 |
| SMA 25 | 60 | 20 | 7 | 4000 |

## Tapped Hole Rail Dimensions



Unit: $m m$

| Rail Model | S | $\mathrm{h}(\mathrm{mm})$ |
| :---: | :---: | :---: |
| MSA 15T | M5 | 8 |
| MSA 20T | M6 | 10 |
| MSA 25T | M6 | 12 |

## Dimensions of SMA-A

## 



Unit: mm

| Model No . | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\mathrm{H}}{\mathrm{Height}}$ | Width w | Length L | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | T | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| SMA 15 A | 24 | 47 | 61.4 | 16 | 4.2 | 38 | 30 | M5×11 | 39.3 | 7 | 11 | 4.3 | 7 | 4.9 | 3.3 | G-M4 |
| SMA 20 A | 30 | 63 | 76.7 | 21.5 | 5 | 53 | 40 | M6x10 | 51.3 | 7 | 10 | 5.1 | 12 | 6 | 5.3 | G-M6 |
| SMA 25 A | 36 | 70 | 83.4 | 23.5 | 6.5 | 57 | 45 | $\mathrm{M} 8 \times 16$ | 59 | 11 | 16 | 6 | 12 | 5.4 | 5.3 | G-M6 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


|  | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | Width $W_{1}$ | $\begin{gathered} \text { Height } \\ \mathrm{H}_{1} \end{gathered}$ | $\begin{gathered} \text { Pitch } \\ \text { P } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | Dynamic C kN | Static C。 kN |  | N-m <br> Double* |  | N-m <br> Double" | $\begin{gathered} M_{R} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | $\begin{gathered} \text { Carriage } \\ \mathrm{kg} \end{gathered}$ | $\begin{gathered} \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{gathered}$ |
| SMA 15 A | 15 | 15 | 60 | 20 | $7.5 \times 5.3 \times 4.5$ | 11.6 | 17.3 | 0.11 | 0.68 | 0.11 | 0.68 | 0.12 | 0.14 | 1.5 |
| SMA 20 A | 20 | 18 | 60 | 20 | $9.5 \times 8.5 \times 6$ | 18.8 | 27 | 0.22 | 1.37 | 0.22 | 1.37 | 0.26 | 0.31 | 2.4 |
| SMA 25 A | 23 | 22 | 60 | 20 | $11 \times 9 \times 7$ | 27.6 | 38.9 | 0.36 | 2.14 | 0.36 | 2.14 | 0.44 | 0.52 | 3.4 |

## Dimensions of SMA-E



| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Height H | Width W | $\begin{gathered} \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | $\mathrm{T}_{1}$ | T | N | G | K | $\mathrm{d}_{1}$ | Grease Nipple |
| SMA 15 E | 24 | 47 | 61.4 | 16 | 4.2 | 38 | 30 | M5×7 | 39.3 | 7 | 11 | 7 | 4.3 | 7 | 4.9 | 3.3 | G-M4 |
| SMA 20 E | 30 | 63 | 76.7 | 21.5 | 5 | 53 | 40 | M6×10 | 51.3 | 7 | 10 | 10 | 5.1 | 12 | 6 | 5.3 | G-M6 |
| SMA 25 E | 36 | 70 | 83.4 | 23.5 | 6.5 | 57 | 45 | $\mathrm{M} 8 \times 10$ | 59 | 11 | 16 | 10 | 6 | 12 | 5.4 | 5.3 | G-M6 |

Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other



| Model No | Bolt Size |  |
| :---: | :---: | :---: |
|  | $\mathrm{S}_{1}$ | $\mathrm{~S}_{2}$ |
| SMA 15 | M5 | M4 |
| SMA 20 | M6 | M5 |
| SMA 25 | M8 | M6 |


| Model No. | Rail dimension |  |  |  |  | Basic load rating |  | Static moment rating |  |  |  |  | Weight |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Width $W_{1}$ | $\begin{array}{\|c\|} \hline \text { Height } \\ H_{1} \end{array}$ | $\begin{array}{\|c\|} \hline \text { Pitch } \\ \text { P } \end{array}$ | $\begin{gathered} \mathrm{E} \\ \text { std. } \end{gathered}$ | $\mathrm{D} \times \mathrm{h} \times \mathrm{d}$ | $\begin{array}{c\|} \hline \text { Dynamic } \\ \text { C } \\ \text { kN } \end{array}$ | $\begin{gathered} \text { Static } \\ \mathrm{C}_{\mathrm{o}} \\ \mathrm{kN} \end{gathered}$ | $\begin{gathered} M_{p} \\ k N-m \end{gathered}$ |  | $\begin{gathered} M_{Y} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ |  | $\begin{gathered} M_{\mathrm{R}} \\ \mathrm{kN}-\mathrm{m} \end{gathered}$ | $\begin{array}{\|c} \text { Carriage } \\ \text { kg } \end{array}$ | $\begin{array}{\|c\|} \hline \text { Rail } \\ \mathrm{kg} / \mathrm{m} \end{array}$ |
|  |  |  |  |  |  |  |  | Single* | Double* | Single* | Double* |  |  |  |
| SMA 15 E | 15 | 15 | 60 | 20 | $7.5 \times 5.3 \times 4.5$ | 11.6 | 17.3 | 0.11 | 0.68 | 0.11 | 0.68 | 0.12 | 0.14 | 1.5 |
| SMA 20 E | 20 | 18 | 60 | 20 | $9.5 \times 8.5 \times 6$ | 18.8 | 27 | 0.22 | 1.37 | 0.22 | 1.37 | 0.26 | 0.31 | 2.4 |
| SMA 25 E | 23 | 22 | 60 | 20 | $11 \times 9 \times 7$ | 27.6 | 38.9 | 0.36 | 2.14 | 0.36 | 2.14 | 0.44 | 0.52 |  |

## Dimensions of SMA-S




Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.


## Ball Chain Compact Type, SMB Series

## Construction



## Characteristics

The trains of balls are designed to a contact angle of $45^{\circ}$ which enables it to bear an equal load in radial, reversed radial and lateral directions. Therefore, it can be applied in any installation direction. Furthermore, SMB series can achieve a well balanced preload for increasing rigidity in four directions while keeping a low frictional resistance. This is especially suit to high precision and high rigidity required motion.

The design of lubrication route makes the lubricant evenly distribute in each circulation loop Therefore, the optimum lubrication can be achieved in any installation direction, and this promotes the performance in running accuracy, service life, and reliability.

## Compact, Four-way Equal Load

Compact design of the carriage with the four trains of balls are allocated to a circular contact angle at $45^{\circ}$, thus each train of balls can take up an equal rated load in all four directions. Moreover, su cient preload can be achieved to increase rigidity, and this makes it suitable for any kind of installation.

## Self Alignment Capability

With self alignment capability, it can absorb the installation error. The self adjustment is performed spontaneously as the design of face-to-face (DF) circular arc groove. Therefore, the installation error could be compensated even under a preload, which results in precise and smooth linear motion.

## Interchangeability

For interchangeable type of linear guideway, the dimensional tolerances are strictly maintained within a reasonable range, and this has made the random matching of the same size of rails and carriages possible. Therefore, the similar preload and accuracy can be obtained even under the random matching condition. As a result of this advantage, the linear guideway can be stocked as standard parts, the installation and maintenance become more convenient.
Moreover, this is also beneficial for shortening the delivery time.

## Use One Rail At The Same Time

MSB and SMB can be used simultaneously with the same rail and provides a variety of product selectivity

## Ball Chain Type Design, Smooth Movement

The ball chain type makes the balls evenly arranged and aligned, while avoiding collisions between the balls. And use strengthened synthetic resin and keep the balls move in a line. Moreover, improve the movement smooth and make the balls more stability during passing in and out at the load district.

## Good Lubricant Effect

The ball chain design and strengthened can keep the oil film between the balls and the ball chain lubricant effectively. Moreover, improve the lubrication effect and service life of the linear guideway, can meet the high accuracy, high reliability and stability, especially suit for the equipment needs of high speed

## Carriage Type

Heavy Load Type


This type offers the installation either from top or bottom side of carriage.


Square type with smaller width and can be installed from top side of carriage.

## Rail Type

Counter Bore (R, U type)
Tapped Hole (T type)


## Description of Specification

Non-Interchangeable Type
SMB 25 E 2 SS FO + R 1200 -20 /40 P
Series: SMB
Size : 15, 20, 25, 30
Carriage type
Heavy load
E: Flange type, mounting
either from top or bottom
S: Square type
Number of carriages per rail
1, 2, 3 ...
Dust protection option of carriage No symbol, UU, SS, ZZ, DD, KK, LL, RR, HD (refer to Dust Proof [B1-242] )
Preload: FC (Light preload)
F0 (Medium preload), F1 (Heavy preload)
Code of special carriage :
No symbol, A, B, ...
Rail type
$\mathbf{R}, \mathbf{U}^{*}$ (Counter-bore type), $\mathbf{T}$ (Tapped hole type)
Rail length (mm)
Rail hole pitch from start side (E1, see Fig.2)
Rail hole pitch to the end side (E2, see Fig.2)
Accuracy grade : N, H, P
Code of special rail : No symbol, A, B ...
Dust protection option of rail
No symbol, /CC, /MC, /MD
( refer to Code of Contamination for Rail [B1-243])
Number of rails per axis : No symbol, II, III, IV ...
Note*: U type rail is only applicable for MSB15 with M4 mounting hole.

B1-209


## Interchangeable Type

## Code of Carriage



## Accuracy Grade



Table 2 Running Parallelism

| Rail length (mm) |  | Running Parallelism Values(um) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Above | Or less (incl.) | $\mathbf{N}$ | $\mathbf{H}$ | $\mathbf{P}$ | SP | UP |
| 0 | 315 | 9 | 6 | 3 | 2 | 1.5 |
| 315 | 400 | 11 | 8 | 4 | 2 | 1.5 |
| 400 | 500 | 13 | 9 | 5 | 2 | 1.5 |
| 500 | 630 | 16 | 11 | 6 | 2.5 | 1.5 |
| 630 | 800 | 18 | 12 | 7 | 3 | 2 |
| 800 | 1000 | 20 | 14 | 8 | 4 | 2 |
| 1000 | 1250 | 22 | 16 | 10 | 5 | 2.5 |
| 1250 | 1600 | 25 | 18 | 11 | 6 | 3 |
| 1600 | 2000 | 28 | 20 | 13 | 7 | 3.5 |
| 2000 | 2500 | 30 | 22 | 15 | 8 | 4 |
| 2500 | 3000 | 32 | 24 | 16 | 9 | 4.5 |
| 3000 | 3500 | 33 | 25 | 17 | 11 | 5 |
| 3500 | 4000 | 34 | 26 | 18 | 12 | 6 |

## Non-Interchangeable Type

| Mode No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | $\begin{gathered} \text { Precision } \\ \mathbf{P} \end{gathered}$ |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} \hline 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface B | $\Delta \mathrm{D}$ (see the Table 2) |  |  |
| $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta \mathrm{C}$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface B | $\Delta \mathrm{D}$ (see the Table 2) |  |  |

## Interchangeable Type

| Model No. | Item | Accuracy Grade |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Normal N | High H | Precision P |
| $\begin{aligned} & 15 \\ & 20 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.01 | 0.006 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.03$ | $\begin{gathered} 0 \\ -0.03 \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.02 | 0.01 | 0.006 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |
| $\begin{aligned} & 25 \\ & 30 \end{aligned}$ | Tolerance for height H | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} \hline 0 \\ -0.04 \end{gathered}$ |
|  | Height difference $\Delta H$ | 0.02 | 0.015 | 0.007 |
|  | Tolerance for distance $\mathrm{W}_{2}$ | $\pm 0.1$ | $\pm 0.04$ | $\begin{gathered} 0 \\ -0.04 \\ \hline \end{gathered}$ |
|  | Difference in distance $\mathrm{W}_{2}\left(\Delta \mathrm{~W}_{2}\right)$ | 0.03 | 0.015 | 0.007 |
|  | Running parallelism of surface $C$ with surface A | $\Delta C$ (see the Table 2) |  |  |
|  | Running parallelism of surface $D$ with surface $B$ | $\Delta \mathrm{D}$ (see the Table 2) |  |  |

Note: Definition of interchangeable: It is confined to the carriage on the single rail, not including the exchange of multiple rails and carriages.

## Preload Grade

| Series | Preload grade |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Light preload (FC) | Medium preload (F0) | Medium preload (F1) |  |
| SMB15 |  |  | - |  |
| SMB20 |  | $0 \sim 0.02 C$ | $0.03 \sim 0.05 C$ |  |
| SMB25 |  |  | $0.05 \sim 0.08 C$ |  |
| SMB30 |  |  |  |  |

Note: C is basic dynamic load rating in above table. Refer to the specification of products, please.
$\qquad$

## The Shoulder Height and Corner Radius for Installation

SMB series


| Model <br> No. | $r_{1}$ <br> $($ max. $)$ | $r_{2}$ <br> $($ max. $)$ | $h_{1}$ | $h_{2}$ | $\mathrm{H}_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 5}$ | 0.5 | 0.5 | 3 | 4 | 4.5 |
| 20 | 0.5 | 0.5 | 4 | 5 | 6 |
| 25 | 1 | 1 | 5 | 5 | 7 |
| $\mathbf{3 0}$ | 1 | 1 | 7 | 5 | 9.5 |

## Dimensional Tolerance of Mounting Surface

With the self alignment capability, the minor dimensional error in mounting surface could be compensated and achieves smooth linear motion. The tolerances of parallelism between two axes are shown as below.

The parallel deviation between two axes ( $\mathrm{e}_{1}$ )


Unit: $\mu m$

| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| 15 | 25 | 18 | - |
| 20 | 25 | 20 | 18 |
| 25 | 30 | 22 | 20 |
| 30 | 40 | 30 | 27 |

Level difference between two axes ( $\mathrm{e}_{2}$ )


| Model No. | Preload Grade |  |  |
| :---: | :---: | :---: | :---: |
|  | FC | F0 | F1 |
| $\mathbf{1 5}$ | 130 | 85 | - |
| $\mathbf{2 0}$ | 130 | 85 | 50 |
| $\mathbf{2 5}$ | 130 | 85 | 70 |
| $\mathbf{3 0}$ | 170 | 110 | 90 |

Note: The permissible values in table are applicable when the span is 500 mm wide.

## Rail Maximum Length and Standard


$L_{0}=(n-1) \times P+2 \times E$
$L_{0}$ : Total Length of rail ( mm )
$n$ : Number of mounting holes
$P$ : Distance between any two holes ( mm )
$E$ : Distance from the center of the last hole to the edge ( mm )
Unit: mm

| Model No. | Standard Pitch <br> $(P)$ | Standard ( $\left.E_{\text {std. }}\right)$ | Minimum ( $\left.E_{\text {min }}\right)$ | Max ( $L_{0}$ max.) |
| :---: | :---: | :---: | :---: | :---: |
| MSB 15 | 60 | 20 | 5 | 4000 |
| MSB 20 | 60 | 20 | 6 | 4000 |
| MSB 25 | 60 | 20 | 7 | 4000 |
| MSB 30 | 80 | 20 | 7 | 4000 |

## Tapped Hole Rail Dimensions



| Rail Model | S | $h(\mathrm{~mm})$ |
| :---: | :---: | :---: |
| MSB 15 T | M5 | 7 |
| MSB 20 T | M6 | 9 |
| MSB 25 T | M6 | 10 |
| MSB 30 T | M8 | 14 |

## Dimensions of SMB-E

SMB-E


| Model No. | Bolt Size |  |
| :---: | :---: | :---: |
|  | $S_{1}$ | $S_{2}$ |
| SMB 15 | M5 | M4 |
| SMB 20 | M6 | M5 |
| SMB 25 | M8 | M6 |
| SMB 30 | M10 | M8 |

Unit: mm

| Model No. | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Height } \\ \text { H } \end{gathered}$ | $\begin{aligned} & \text { Width } \\ & \text { W } \end{aligned}$ | Length L | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | T ${ }_{1}$ | N | G | K | $\mathrm{d}_{1}$ | $\begin{aligned} & \text { Grease } \\ & \text { Nipple } \\ & \hline \end{aligned}$ |
| SMB 15 E | 24 | 52 | 57.6 | 18.5 | 4.5 | 41 | 26 | M5 $\times 7$ | 40.5 | 5 | 7 | 6 | 5.5 | 3.4 | 3.3 | G-M4 |
| SMB 20 E | 28 | 59 | 69 | 19.5 | 6 | 49 | 32 | M6×9 | 48 | 5 | 9 | 5.5 | 12 | 3.6 | 3.3 | G-M6 |
| SMB 25 E | 33 | 73 | 83.6 | 25 | 7 | 60 | 35 | M8×10 | 60.5 | 7 | 10 | 6 | 12 | 5 | 5.3 | G-M6 |
| SMB 30 E | 42 | 90 | 96 | 31 | 9.5 | 72 | 40 | M10×10 | 70 | 7 | 10 | 8 | 12 | 6 | 5.3 | G-M6 |

Note: Rail mounting holes for $M 3(6 \times 4.5 \times 3.5)$ and $M 4(7.5 \times 5.3 \times 4.5)$ are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.

## Dimensions of SMB-S



|  | External dimension |  |  |  |  | Carriage dimension |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | Height <br> H | $\begin{array}{\|c\|} \hline \text { Width } \\ \mathrm{w} \end{array}$ | $\begin{gathered} \text { Length } \\ \mathrm{L} \end{gathered}$ | $\mathrm{W}_{2}$ | $\mathrm{H}_{2}$ | B | C | $5 \times \ell$ | $\mathrm{L}_{1}$ | T | N | G | K | $d_{1}$ | Grease Nipple |
| SMB 15 S | 24 | 34 | 57.6 | 9.5 | 4.5 | 26 | 26 | M4×6 | 40.5 | 6 | 6 | 5.5 | 3.4 | 3.3 | G-M4 |
| SMB 20 S | 28 | 42 | 69 | 11 | 6 | 32 | 32 | M5×7 | 48 | 6 | 5.5 | 12 | 3.6 | 3.3 | G-M6 |
| SMB 25 S | 33 | 48 | 83.6 | 12.5 | 7 | 35 | 35 | M6×9 | 60.5 | 8 | 6 | 12 | 5 | 5.3 | G-M6 |
| SMB 30 S | 42 | 60 | 96 | 16 | 9.5 | 40 | 40 | M $8 \times 12$ | 70 | 8 | 8 | 12 | 6 | 5.3 | G-M6 |

Note: Rail mounting holes for $\mathrm{M} 3(6 \times 4.5 \times 3.5)$ and $\mathrm{M} 4(7.5 \times 5.3 \times 4.5)$ are available for MSB15 rail. The codes of rail type are MSB15R for M3 mounting holes, and MSB15U for M4 mounting holes.
Note: The basic dynamic load rating C of ball type is based on the 50 km for nomonal life. The conversion between C for 50 km and $\mathrm{C}_{100}$ for 100 km is $\mathrm{C}=1.26 \times \mathrm{C}_{100}$.
Note*: Single: Single carriage/ Double: Double carriages closely contacting with each other.



## Point of Design

## Installation Direction of Linear Guideway

Vertical (Code : V)
The installation direction of linear guideway depends on machine structure and load direction When oil lubrication is applied, the lubricant routing will be varied with different applications. Therefore, please specify the direction of installation when ordering.


## Wall mounting (Code: K)




## Fixing Methods of Linear Guideway

The rail and carriage could be displaced when machine receives vibration or impact. Under such situation, the running accuracy and service life will be degraded, so the following fixing methods are recommended for avoiding such situation happens.

## Shoulder plate (Recommended)

For this method, the rail and carriage should stick out slightly from the bed and table. To avoid interference from corner of carriage and rail, the shoulder plate should have a recess.


Taper gib
A slight tightening of the taper gib could generate a large pressing force to the linear guideway, and this may cause the rail to deform. Thus, this method should be carried with caution.


## Push screw

Due to the limitation of installation space, the size of bolt should be thin.


## Needle roller

The needle roller is pressed by the taper section of the head of screw, so the position of screw should be paid attention.


## Marking on Master Linear Guideway and Combined Case

Recognizing of Reference Side
The reference side of rail is assigned by the arrow sign which is marked together with the model code and lot number on top surface of rail while that of carriage is the side which is opposed to the side marked with lot number and model code marked, as shown below.


Marking on Rail
[Model No.
$\triangle \overline{\text { MSA25R-P }}$
S3-500058703-001 MR 1 MR $_{\text {Master rail }}^{\text {Lequence No. }}$

Marking on Carriage


Recognizing of reference side

## Recognizing of Master Rail

Linear rails to be applied on the same plane are all marked with the same serial number, and "MR" is marked at the end of serial number for indicating the master rail, shown as the figure below. The reference side of carriage is the surface where is ground to a specified accuracy. For normal grade ( N ), it has no mark "MR" on rail which means any one of rails with same serial number could be the master rail.


Subsidiary rail $\square$

## Recognizing of master rail

## Combined Use of Rail and Carriage

For combined use, the rail and carriage must have the same serial number. When reinstalling the carriage back to the rail, make sure they have the same serial number and the reference side of carriage should be in accordance with that of rail.

## For Butt-joint Rail

When applied length of rail longer than specified max. length, the rails can be connected to one another. For this situation, the joint marks indicate the matching position. Accuracy may deviate at joints when carriages pass the joint simultaneously. Therefore, the joints should be interlaced for avoiding such accuracy problem.


Fig. 8 Identification of butt-joint rail


Fig. 9 Staggering the joint position

Installation of Linear Guideway When Machine Subjected to Vibration and Impact


Installation of rail
step. 1


Prior to installation, the burrs, dirt, and rust preventive oil should be removed thoroughly


Gently place the linear guideway on the bed, and pushing it against the reference side of bed.
step. 3


Check for correct bolt play and temporarily tighten all bolts.
step. 4


Tighten the push screw in sequence to ensure the rail close matching the reference side of bed.


Tighten all bolts to the specified torque. The tightening sequence should start from the right side to the left side. By doing this, the original accuracy could be achieved.

## step. 6

Follow the same procedure for the installation of remaining rails

## Installation of carriage



## step. 1

Gently place table onto carriages and temporarily tighten the bolts.
step. 2
Tighten the push screw to hold the master rail carriage against the table reference side, and position the table.
step. 3
Fully tighten all bolts on both master and subsidiary sides. The tightening process should be followed by the order
of to

## Installation of Linear Guideway without Push Screws



Installation of master rail

## Using a vise

First tighten the mounting bolts temporarily, than use a $C$ vise to press the master rail to reference side. Tighten the mounting bolts in sequence to specified torque.


## Installation of subsidiary rail

## Using a straight edge

Place a straight edge between the two rails and position it parallel to the reference side rail which is temporarily tightened by bolts. Check the parallelism with dial gauge, and align the rail if necessary. Then tighten the bolts in sequence.


## Using a table

Tighten two master side carriages and one subsidiary side carriage onto the table. Then temporarily tighten another subsidiary carriage and rail to the table and bed. Position a dial gauge on the table and have the probe of dial gauge contact the side of the subsidiary carriage Move the table from the rail end and check the parallelism between the carriage and the subsidiary rail. Then tighten the bolts in sequence.


## Compare to master rail side

Tighten two master side carriages and one subsidiary side carriage onto the table. Then temporarily tighten another subsidiary carriage and rail to the table and bed. Move the table from one rail, check and align the parallelism of subsidiary rail based on moving resistance Tighten the bolts in sequence.


## Using a jig

Using the special jig to align the parallelism between the reference side of master rail and that of subsidiary rail from one rail end to another. Tighten the mounting bolts in sequence.


## The Installation of Carriage of Linear Guideway without the

 Reference Side for Master Rail

Mounting the master rail

## Using a temporary reference side

Two carriages are tightened together onto the measuring plate, and set up a temporary reference surface near the rail mounting surface on the bed. Check and align the parallelism of rails and then tighten bolts sequentially.


## Using a straight edge

At first temporarily tighten rail onto the bed, then use a dial gauge to align the straightness of rail. Tighten the bolts in sequence.


The installation of subsidiary carriage and rail is same as the prior examples

## Accuracy Measurement after Installation

The running accuracy can be obtained by tightening the two carriages onto the measuring plate. A dial gauge or autocollimeter is sued for measuring the accuracy. If a dial gauge is used, the straight edge should be placed as close to carriage as possible for accurate measurement.

## Measuring with an Autocollimeter



Measuring with a Dial Gauge


## The Recommended Tightening Torque for Rails

The improper tightening torque could affect the mounting accuracy, so tightening the bolts by torque wrench to specified toque is highly recommended. Different types of mounting surface should have different torque value for applications.

| Bolt Model | Torque Value |  |  |
| :---: | :---: | :---: | :---: |
|  | Iron | Cast iron | Aluminum |
| M3 | 0.6 | 0.4 | 0.3 |
| M4 | 2 | 1.3 | 1 |
| M5 | 4 | 2.7 | 2 |
| M6 | 8.8 | 5.9 | 4.4 |
| M8 | 13.7 | 9.2 | 6.8 |
| M10 | 30 | 20 | 15 |
| M12 | 68 | 45 | 33 |
| M14 | 120 | 78 | 58 |
| M16 | 157 | 105 | 78 |
| M20 | 196 | 131 | 98 |

Note: $1 \mathrm{~N}-\mathrm{m}=0.738 \mathrm{lbf}-\mathrm{ft}$

## Options

## Dust Proof

Code of contamination protection

## Code of contamination protection for Carriage

- MSA, MSB Series

| Code | Contamination Protection |
| :---: | :--- |
| no symbol | Scraper(both ends) |
| UU | Bidirectional end seal(both ends) |
| SS | Bidirectional end seal+Bottom seal |
| ZZ | SS+Scraper |
| DD | Double bidirectional end seal+Bottom seal |
| KK | DD+Scraper |
| LL | Low frictional end seal |
| RR | LL+Bottom seal |
| HD | high dust prove end seal +high dust prove inner and bottom seal <br> (reference[B1-238]) |

- MSG, MSR, SMR, SME Series

| Code | Contamination Protection |
| :---: | :--- |
| no symbol | Scraper(both ends) |
| UU | Bidirectional end seal(both ends) |
| SS | Bidirectional end seal+Bottom seal+Inner seal |
| ZZ | SS+Scraper |
| DD | Double bidirectional end seal+Bottom seal+Inner seal |
| KK | DD+Scraper |


| • SMA, SMB Series |  |
| :---: | :--- |
| Code | Contamination Protection |
| no symbol | Scraper(both ends) |
| UU | Bidirectional end seal(both ends) |
| SS | Bidirectional end seal+Bottom seal |
| ZZ | SS+Scraper |
| DD | Double bidirectional end seal+Bottom seal |
| KK | DD+Scraper |
| LL | Low frictional end seal |
| RR | LL+Bottom seal |

- MSC, MSD Series :

| Code | Contamination Protection |
| :---: | :--- |
| LL | Low frictional end seal |
| RR | LL+Bottom seal |

Code of contamination protection for Rail

| $\bullet$ •MSA, MSB, MSG, MSR, SMR, SME , SMA, SMB Series |  |
| :---: | :--- |
| Code | Contamination Protection |
| /CB | Cover strip (Buckle Type) |
| /CC | Cover strip (Rail have steel strip groove) |
| /CD | Cover strip (Rail without steel strip groove) |
| /MC | Brass bolt cap |
| /MD | Stainless bolt cap |

Note: There are two metallic bolt caps of copper and stainless that could be supplied by customer's choice Note: Buckle Type: Apply to MSR, SMR Series

## Seal materials choice

Beside the standard seal NBR that FKM (Fluorocarbon Rubber) seal or HNBR (Hyfrogenated Nitrile Butadiene Rubber) seal could be supplied as requirement by customer's choice.

Because FKM and HNBR series are not standard products, we do not prepare stocks Customization is necessary.
*PMI

## Contamination protection

Each series of linear guideway offers various kinds of dust protection accessory to keep the foreign matters from entering into the carriage.


Two types sealing are available:
1.Seal for high dust protection required.
2.Seal for low frictional resistance required.


Prevent the inclusion of foreign matters form the bolt hole.


Preventing the inclusion of foreign matters from bottom of carriage.


Removing spatters, iron chips, and large foreign matters as well as protecting the end seals.

## HD-Enhanced Dust-proof

## Construction

According to the environmental and operational conditions, PMI provide enhanced contamination protection could be supplied as requirement by customer's choice, the excellent of enhanced contamination protection to prevent dust enter the carriage.
high dust end seal

offer special design bidirectional end seal
high dust inner and bottom seal


Prevent the foreign matters enter the carriage from the bolt hole.

## Features

- Inner seal attached, having better seal effect than normal dust-proof attachment.
- Bidirectional end seal design strengthens the contact of rails with dust-proof end seal and high dust-proof inner \& bottom seal.
- The size and length of enhanced dust-proof is the same as normal ones. And also have double effect of dust-proof.


## Application

- Applicable to carpentry industry.


## Test Conditions

Specification:MSA25SHD

| Running Length | 500 mm (per cycle) |
| :---: | :---: |
| Test Distance | 150 Km |
| Feed Rate | $1.7 \mathrm{~m} / \mathrm{min}$ |
| Particle Amount | Spray continuously |

Result


After running 150 KM in a wood flour test environment the carriage is still moving smoothly and the steel balls are also glossy. The end seal and inner seal protect against wood flour from entering the carriage. Overall running smoothness is not effected.

## Description of Specification

- Non-Interchangeable Type


Note: Rail Model-MSA15, MSA20, MSA25, MSA30, MSA35, MSB15, MSB20(A type, E type, S type)

- Interchangeable Type Carriage

|  | MSA25 A HD FC N |  |
| :--- | :--- | :--- |
| Model no. |  |  |
| Carriage type |  |  |
| Dust protection option |  |  |
| Preload |  |  |
| Accuracy grade |  |  |
| Code of special carriage |  |  |

Note: Rail Model- MSA15, MSA20, MSA25, MSA30, MSA35, MSB15, MSB20(A type, E type, S type)

Each Series of linear guideway with different dust-proof accessories, comparing with standard dust-proof accessories, the overall length of carriage is different, as below table shown:

| MSA Series |  |  |  |  |  |  |  |  | Unit: mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Model No. | No symbol | UU | SS | LL | RR | ZZ | DD | KK | HD |
| 15 | 1 | - | - | - | - | 6 | 5 | 11 | 3 |
| 20 | 1.4 | - | - | - | - | 7 | 5.6 | 12.6 | 0.4 |
| 25 | 1.4 | - | - | - | - | 7 | 5.6 | 12.6 | 0.4 |
| 30 | 1.4 | - | - | - | - | 7 | 5.6 | 12.6 | 0.4 |
| 35 | 0.6 | - | - | - | - | 7.8 | 7.2 | 15 | - |
| 45 | 0.6 | - | - | - | - | 7.8 | 7.2 | 15 | - |
| 55 | - | - | - | - | - | 7.8 | 7.8 | 15.6 | - |
| 65 | - | - | - | - | - | 7.8 | 7.8 | 15.6 | - |

MSB Series

| Model <br> No. | No <br> symbol | UU | SS | LL | RR | ZZ | DD | KK | HD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 5}$ | - | - | - | - | - | 5 | 5 | 10 | 1 |
| $\mathbf{2 0}$ | 1 | - | - | - | - | 7 | 6 | 13 | - |
| $\mathbf{2 5}$ | 1 | - | - | - | - | 7 | 6 | 13 | - |
| $\mathbf{3 0}$ | 1 | - | - | - | - | 7 | 6 | 13 | - |
| $\mathbf{3 5}$ | 0.6 | - | - | - | - | 7.8 | 7.2 | 15 | - |
| $\mathbf{4 5}$ | 0.6 | - | - | - | - | 7.8 | 7.2 | 15 | - |

MSG Series
Unit: mm

| Model No. | no symbol | UU | SS | ZZ | DD | KK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 7}$ | - | - | - | 6 | 6 | 12 |
| $\mathbf{2 1}$ | - | - | - | 6 | 6 | 12 |
| $\mathbf{2 7}$ | 1 | - | - | 7 | 6 | 13 |
| $\mathbf{3 5}$ | 1.8 | - | - | 7.8 | 6 | 13.8 |

## MSR, SMR Series

| Model No. |  | no symbol | UU | SS | ZZ | DD | KK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSR 20 | - | - | - | - | 6 | 6 | 12 |
| MSR 25 | SMR 25 | - | - | - | 6 | 6 | 12 |
| MSR 30 | SMR 30 | 1 | - | - | 7 | 6 | 13 |
| MSR 35 | SMR 35 | 1 | - | - | 7 | 6 | 13 |
| MSR 45 | SMR 45 | 0.6 | - | - | 7 | 6.4 | 13.4 |
| MSR 55 | SMR 55 | 0.6 | - | - | 7.8 | 7.2 | 15 |
| MSR 65 | SMR 65 | -0.2 | - | - | 7.8 | 8 | 15.8 |

SME Series
Unit: mm

| Model No. | no symbol | UU | SS | ZZ | DD | KK |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 5}$ | 1.6 | - | - | 7 | 5.4 | 12.4 |
| $\mathbf{2 0}$ | 1 | - | - | 7 | 6 | 13 |
| $\mathbf{2 5}$ | 1 | - | - | 7 | 6 | 13 |
| $\mathbf{3 0}$ | 1 | - | - | 7 | 6 | 13 |
| $\mathbf{3 5}$ | 1 | - | - | 7.8 | 6.8 | 14.6 |
| $\mathbf{4 5}$ | 0.6 | - | - | 7.8 | 7.2 | 15 |

Resistance value of seal

## MSA series

The maximum resistance value of MSA series with seals type UU when it is applied with grease is shown below.

Unit: N

| Model No. | Resistance |  |
| :---: | :---: | :---: |
|  | UU | HD |
| 15 | 2 | 18 |
| 20 | 3.5 | 19 |
| 25 | 4 | 30 |
| 30 | 6 | 23 |
| 35 | 10 | 25 |
| 45 | 12 | - |
| 55 | 18 | - |
| 65 | 30 | - |

## MSC, MSD series

The maximum resistance value of MSC series with seals type LL when it is applied with grease is shown below.

|  | Unit: N | MSD |  | Unit: N |
| :---: | :---: | :---: | :---: | :---: |
| Model No. | Resistance | Model No. | Resistance |  |
| 7 | 0.08 | 7 | 0.4 |  |
| 9 | 0.1 | 9 | 0.8 |  |
| 12 | 0.4 | 12 | 1.1 |  |
| 15 | 0.8 | 15 | 1.3 |  |

## MSB series

The maximum resistance value of MSB series with seals type UU when it is applied with grease is shown below.

Unit: $N$

| Model No. | Resistance |  |
| :---: | :---: | :---: |
|  | UU | HD |
| $\mathbf{1 5}$ | 2 | 18 |
| 20 | 3.5 | 19 |
| 25 | 4 | - |
| 30 | 6 | - |
| 35 | 10 | - |
| 45 | 12 | - |
|  |  |  |

## MSR, SMR series

The maximum resistance value of MSR and SMR series with seals type UU when it is applied with grease is shown below.

Unit: N

| Model No. |  | Resistance |
| :---: | :---: | :---: |
| MSR 20 | - | 3.5 |
| MSR 25 | SMR 25 | 4.5 |
| MSR 30 | SMR 30 | 8 |
| MSR 35 | SMR 35 | 12 |
| MSR 45 | SMR 45 | 18 |
| MSR 55 | SMR 55 | 20 |
| MSR 65 | SMR 65 | 35 |

## MSG series

The maximum resistance value of MSG series with seals type UU when it is applied with grease is shown below.

Unit: $N$

| Model No. | Resistance |
| :---: | :---: |
| $\mathbf{1 7}$ | 2 |
| 21 | 3.5 |
| 27 | 4 |
| $\mathbf{3 5}$ | 6 |

## SMA series

The maximum resistance value of SMA series with seals type UU when it is applied with grease is shown below.

| Model No. | Resistance |
| :---: | :---: |
|  | UU |
| $\mathbf{1 5}$ | 2 |
| 20 | 3.5 |
| 25 | 4 |

## SME series

The maximum resistance value of SME series with seals type UU when it is applied with grease is shown below.

Unit: N

| Model No. | Resistance |
| :---: | :---: |
| $\mathbf{1 5}$ | 2 |
| $\mathbf{2 0}$ | 3.5 |
| $\mathbf{2 5}$ | 4 |
| 30 | 6 |
| 35 | 10 |
| 45 | 12 |

## SMB series

The maximum resistance value of SMB series with seals type UU when it is applied with grease is shown below.

Unit: N

| Model No. | Resistance |
| :---: | :---: |
|  | UU |
| $\mathbf{1 5}$ | 2 |
| $\mathbf{2 0}$ | 3.5 |
| $\mathbf{2 5}$ | 4 |
| $\mathbf{3 0}$ | 6 |

## Cover Strip

A special designed of cover strip is used to cover the bolt hole to prevent the foreign matters from entering the carriage. Indicate that the cover strip is required when ordering the guideway. Please refer to [B1-233] "Code of Contamination Protection for Rail" for the ordering code.

## Standard Type (Apply to MSA, MSB, SME, MSR, SMR, SMA, SMB Series)



Note:
When mounting the cover strip, the rail needs to be machined. The cover strip does not increase the height of rail. ( the code of rail dust proof accessories "CC")

Note:
When mounting the cover strip, if the rail doesn't need to be machined, the cover strip will increase the height 0.3 mm after the rail assembly, therefore, the resistance will increase. (the code of rail dust proof accessories "CD")

## Buckle Type (Apply to MSR, SMR Series)

For the customer application, PMI design the buckle type of cover strip. The cover strip is fixed on the rail, and that will increase the assembly height of rail.


| Series | Increment(mm) | Assembly Height of Rail(mm) |
| :---: | :---: | :---: |
| SMR25/MSR25 | 0.3 | 23.8 |
| SMR30/MSR30 | 0.3 | 27.8 |
| SMR35/MSR35 | 0.3 | 30.8 |
| SMR45/MSR45 | 0.3 | 37.3 |
| SMR55/MSR55 | 0.3 | 43.3 |
| SMR65/MSR65 | 0.3 | 52.3 |

Note: Due to the increase of the cover strip thickness, the preload will increase after mounting.

## Caps for rail mounting hole

A special designed of cap is used to cover the bolt hole to prevent the foreign matters from entering the carriage. According to difference of application, PMI provide two kind of caps for selection, made by plastic and metal. The metallic cap is for option, please specify when ordering. The plastic cap is mounted by using a plastic hammer with a flat pad placed on the top, until the top of cap is flush to the top surface of rail.The dimension of caps for different sizes of rail is shown.

## nstallation of plastic and metal cap

According to the environmental and operational conditions, choose plastic or metal, plastic and metal model cap size, please refer to Table 1, Table 2.

## The steps of installing bolt cap with rail by below indicated figures



Put the cap into the bolt hole of rail.


Clear the "shaving " away from the side of bolt hole.


Put the plate on the cap,then pound it into the bolt of rail with rubber hammer vertically.
step. 4


Continue pounding the cap until the cap is on the same plane with the top surface of rail.


Use oil stone to polish the surface of caps and mop them with clean bunny cloth. And finally check the installation is good for smoothing by your finger.

## Install attention

Owing to the side of hole is very sharp during installation. Therefore, pay special attention for safety in case of finger and hands be slashed.

| Table 10 <br> Code of <br> Plastic Cap <br> M3C | Bolt Size | M3 |  | MSB15R |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M4C | M4 | MSA15R | MSB15U |  | SME15R |  | MSG17R <br> MSG21R <br> MSG27R |
| M5C | M5 | MSA20R | MSB20R | MSR20R | SME20R |  |  |
| M6C | M6 | MSA25R | MSB25R <br> MSB30R | MSR25R | SME25R | SMR25R | MSG35R |
| M8C | M8 | MSA30R <br> MSA35R | MSB30U <br> MSB35R | MSR30R <br> MSR35R | SME30R <br> SME35R | SMR30R <br> SMR35R |  |
| M12C | M12 | MSA45R | MSB45R | MSR45R | SME45R | SMR45R |  |
| M14C | M14 | MSA55R |  | MSR55R |  | SMR55R |  |
| M16C | M16 | MSA65R |  | MSR65R |  | SMR65R |  |

Table 11

| Code of <br> Metallic Cap | Bolt Size | Rail Model |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M4MC | M4 | MSA15R | MSB15U |  | SME15R |  | MSG17R <br> MSG21R <br> MSG27R |  |  |  |  |
| M5MC | M5 | MSA20R | MSB20R | MSR20R | SME20R |  |  |  |  |  |  |
| M6MC | M6 | MSA25R | MSB25R <br> MSB30R | MSR25R | SME25R | SMR25R | MSG35R |  |  |  |  |
| M8MC | M8 | MSA30R <br> MSA35R | MSB30U <br> MSB35R | MSR30R <br> MSR35R | SME30R <br> SME35R | SMR30R <br> SMR35R |  |  |  |  |  |
| M12MC | M12 | MSA45R | MSB45R | MSR45R | SME45R | SMR45R |  |  |  |  |  |
| M14MC | M14 | MSA55R |  | MSR55R |  | SMR55R |  |  |  |  |  |
| M16MC | M16 | MSA65R |  | MSR65R |  | SMR65R |  |  |  |  |  |

## Lubrication

A well lubrication is important for maintaining the function of linear guideway. If the lubrication is not sufficient, the frictional resistance at rolling area will increase and the service life will be shortened as a result of wear of rolling parts.
Two primary lubricants are both grease and oil used for linear motion system, and the lubrication methods are categorized into manual and forced oiling. The selection of lubricant and its method should be based on the consideration of operating speed and environment requirement.

Grease lubrication
The grease feeding interval will be varied with different operating conditions and environments. Under normal operating condition, the grease should be replenished every 100 km of travel. Moving the carriage back and forth with minimum stroke length of length of 3 carriages after the carriages been greased. To assure the grease is evenly distributed inside of carriage, the mentioned process should be repeated twice at least. After the linear guideway is installed on the machine, it still needs to be refilled with grease.

## Grease amount to be bed

| Model No. | Initial Feeding Amount(cm $\left.{ }^{3}\right)$ | Amount for Replenishing(cm $\left.{ }^{3}\right)$ |
| :---: | :---: | :---: |
| MSA 15 | 1.1 | 0.4 |
| MSA 20 | 2.1 | 0.7 |
| MSA 25 | 3.5 | 1.2 |
| MSA 30 | 5.8 | 1.9 |
| MSA 35 | 8.2 | 2.7 |
| MSA 45 | 16.1 | 5.4 |
| MSA 55 | 27.1 | 9.0 |
| MSA 65 | 51.6 | 17.2 |
| MSA 20L | 3.1 | 1.0 |
| MSA 25L | 5.1 | 1.7 |
| MSA 30L | 8.2 | 2.7 |
| MSA 35L | 11.8 | 3.9 |
| MSA 45L | 23.0 | 7.7 |
| MSA 55L | 38.8 | 12.9 |
| MSA 65L | 77.8 | 25.9 |


| Model No. | Initial Feeding Amount( $\mathrm{cm}^{3}$ ) | Amount for Replenishing(cm ${ }^{3}$ ) |
| :---: | :---: | :---: |
| MSB 15 | 1.0 | 0.3 |
| MSB 20 | 1.5 | 0.5 |
| MSB 25 | 2.8 | 0.9 |
| MSB 30 | 4.5 | 1.5 |
| MSB 35 | 8.2 | 2.7 |
| MSB 45 | 16.1 | 5.4 |
| MSB 15T | 0.4 | 0.1 |
| MSB 20T | 0.7 | 0.2 |
| MSB 25T | 1.5 | 0.5 |
| MSB 30T | 2.2 | 0.7 |
| MSB 35L | 11.8 | 3.9 |
| MSB 45L | 23.0 | 7.7 |
| MSG 17 | 1.0 | 0.3 |
| MSG 21 | 1.2 | 0.4 |
| MSG 27 | 2.1 | 0.7 |
| MSG 35 | 5.6 | 1.9 |
| MSC 7 | 0.06 | 0.02 |
| MSC 9 | 0.16 | 0.05 |
| MSC 12 | 0.25 | 0.08 |
| MSC 15 | 0.49 | 0.16 |
| MSC 7L | 0.11 | 0.04 |
| MSC 9L | 0.24 | 0.08 |
| MSC 12L | 0.42 | 0.14 |
| MSC 15L | 0.80 | 0.27 |
| MSD 7 | 0.19 | 0.06 |
| MSD 9 | 0.42 | 0.14 |
| MSD 12 | 0.73 | 0.24 |
| MSD 15 | 1.51 | 0.50 |
| MSD 7L | 0.28 | 0.09 |
| MSD 9L | 0.60 | 0.20 |
| MSD 12L | 1.07 | 0.36 |
| MSD 15L | 2.18 | 0.73 |


| Model No. | Initial Feeding Amount( $\mathrm{cm}^{3}$ ) | Amount for Replenishing(cm ${ }^{3}$ ) |
| :---: | :---: | :---: |
| MSR 20 | 3.0 | 1.0 |
| MSR 25 | 4.5 | 1.5 |
| MSR 30 | 7.0 | 2.3 |
| MSR 35 | 9.6 | 3.2 |
| MSR 45 | 17.1 | 5.7 |
| MSR 55 | 26.0 | 8.7 |
| MSR 65 | 51.3 | 17.1 |
| MSR 25L | 5.5 | 1.8 |
| MSR 30L | 8.7 | 2.9 |
| MSR 35L | 12.3 | 4.1 |
| MSR 45L | 22.0 | 7.3 |
| MSR 55L | 34.3 | 11.4 |
| MSR 65L | 64.8 | 21.6 |
| SMR 25 | 5.9 | 2.0 |
| SMR 30 | 8.8 | 2.9 |
| SMR 35 | 12.6 | 4.2 |
| SMR 45 | 21.0 | 7.0 |
| SMR 55 | 32.1 | 10.7 |
| SMR 65 | 60.0 | 20.0 |
| SMR 25L | 7.2 | 2.4 |
| SMR 30L | 11.0 | 3.7 |
| SMR 35L | 16.0 | 5.3 |
| SMR 45L | 26.5 | 8.8 |
| SMR 55L | 42.6 | 14.2 |
| SMR 65L | 76.1 | 25.4 |
| SME 15 | 1.6 | 0.5 |
| SME 20 | 2.6 | 0.9 |
| SME 25 | 4.1 | 1.4 |
| SME 30 | 6.0 | 2.0 |
| SME 35 | 9.7 | 3.2 |
| SME 45 | 13.2 | 4.4 |
| SME 20L | 3.6 | 1.2 |
| SME 25L | 5.2 | 1.7 |
| SME 30L | 8.1 | 2.7 |
| SME 35L | 13.0 | 4.3 |
| SME 45L | 18.5 | 6.2 |


| Model No. | oil total volume $\left(\mathrm{cm}^{3}\right)$ | Amount for Replenishing( $\mathrm{cm}^{3}$ ) | Model No. | oil total volume $\left(\mathrm{cm}^{3}\right)$ | Amount for Replenishing( $\mathrm{cm}^{3}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SMA 15 | 1.4 | 0.5 | SMB 15 | 1.3 | 0.5 |
| SMA 20 | 2.6 | 0.9 | SMB 20 | 1.8 | 0.6 |
|  |  |  | SMB 25 | 3.4 | 1.2 |
| SMA 25 | 4.4 | 1.5 | SMB 30 | 5.5 | 1.8 |

## Oil lubrication

The recommended viscosity of oil is $30 \sim 150$ cst, and the recommended feeding rate per hour is shown as table below. The installation other than horizontal may caused the oil unable to reach raceway area, so please specify the installed direction your linear guideway applied. Reference is shown in page B1-214, Installation Direction of Linear Guideway.

## Oil lubrication feeding rate

| Model No. | Initial Feeding <br> Amount $\left(\mathrm{cm}^{3}\right)$ | Feeding Rate <br> $\left(\mathrm{cm}^{3} / \mathrm{hr}\right)$ |
| :---: | :---: | :---: |
| $\mathbf{1 5}$ | 0.6 | 0.2 |
| $\mathbf{2 0}$ | 0.6 | 0.2 |
| $\mathbf{2 5}$ | 0.9 | 0.3 |
| $\mathbf{3 0}$ | 0.9 | 0.3 |
| $\mathbf{3 5}$ | 0.9 | 0.3 |
| $\mathbf{4 5}$ | 1.2 | 0.4 |
| $\mathbf{5 5}$ | 1.5 | 0.5 |
| 65 | 1.8 | 0.6 |
| MSG 17 | 0.6 | 0.2 |
| MSG 21 | 0.6 | 0.2 |
| MSG 27 | 0.9 | 0.3 |
| MSG 35 | 0.9 | 0.3 |

Note: When the operating stroke length less than the sum of length of two carriages, the lubrication fitting should be applied on both ends of carriage for adequacy. Moreover, if the stroke length less than a half of the length of a carriage, the carriage should be moved back and forth up to the length of two carriages while lubricating.

## SL Lubricator

## Construction and Characteristics



## Characteristics

PMIISL lubricator unit is designed with an oil reservoir which equipped with a high-density fiber net. Through the fiber net the lubricant can be steadily fed onto the surface of raceway to satisfy the required lubricating function.

- Lengthening the interval between maintenance works

Contrary to the oil losing problem caused from ordinary lubrication, the SL lubricator effectively and evenly distribute needed amount of oil on to ball raceway during the movement. Therefore, the interval between maintenance works can be greatly extended.

- To avert the pollution

Through the use of SL lubricator, only the needed amount of oil will be fed for the purpose of lubrication, thereby the oil is almost nothing to lose in application. As a result, the environment will not be contaminated by waste oil.

## - Cost reduction

Saving the expense from oil loss and lubricating device.

- Enables the most suitable oil for the purpose of use to be selected

The SL lubricator makes it possible to select the most proper lubricant for your application of linear guideway.

## Performance

- Lengthening the interval between maintenance works

By using the SL lubricator, the interval between maintenance work can be lengthened at all load rating.

- Running Test without Replenishment of Lubricant

- Effective use of lubricant

Since only the needed amount of lubricant will be applied to needed location, thereby effective use of lubricant can be achieved and the waste of lubricant can also be avoided.

- Annual Lubricant Consumption per Carriage


Supplied amount of lubricant

```
Amount of oil contained in SL Lubricator
    5.8 cc x 2 / carriage
        =11.6 cc
```


## Forced lubrication

$0.3 \mathrm{cc} / \mathrm{hr} \times 8 \mathrm{hrs} /$ day $\times 260$ days/year $=624 \mathrm{cc}$

## Description of Specification

- Non-Interchangeable Type

- Interchangeable Type Carriage

MSA25 A SS FC N /SL

| Model no. | MSA25 A SS FCN |  |  |
| :--- | :--- | :---: | :---: |
| Carriage type |  |  |  |
| Dust protection option |  |  |  |
| Preload |  |  |  |
| Accuracy grade |  |  |  |
| Code of special carriage |  |  |  |
| SL lubricator |  |  |  |

## Dimensions of the SL Lubricator

## - MSA series



| Model No. |  | SL Lubricator dimension (mm) |  |  |  | Carriage dimension (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height | Width | Thickness | Tapped | Standard | SL Lubricator |
| MSA 15SL | A/E/S | 19 | 31.2 | 10 | M4 | 56.3 | 76.3 |
| MSA 20SL | A/E/S | 21.2 | 42.8 | 10 | M6 | 67.3 | 92.9 |
|  | LA/LE/LS |  |  |  |  | 83.2 | 108.8 |
| MSA 25SL | A/E/S | 28.5 | 46.8 | 10 | M6 | 76 | 101.6 |
|  | LA/LE/LS |  |  |  |  | 95 | 120.6 |
| MSA 30SL | A/E/S | 32 | 57 | 10 | M6 | 91.4 | 117 |
|  | LA/LE/LS |  |  |  |  | 113.6 | 139.2 |
| MSA 35SL | A/E/S | 36.5 | 68 | 10 | M6 | 104 | 131.2 |
|  | LA/LE/LS |  |  |  |  | 129.4 | 156.6 |
| MSA 45SL | A/E/S | 49 | 83.6 | 15 | 1/8PT | 130.5 | 167.7 |
|  | LA/LE/LS |  |  |  |  | 162.3 | 199.5 |
| MSA 55SL | A/E/S | 53 | 97 | 15 | 1/8PT | 153.7 | 191.5 |
|  | LA/LE/LS |  |  |  |  | 191.7 | 229.5 |
| MSA 65SL | A/E/S |  |  |  |  | 191.2 | 229 |
|  | LA/LE/LS | 67 | 120 | 15 | 1/8PT | 245.2 | 283 |

Note: Supply the Dust proof series(UU, SS, ZZ, LL, RR)

- MSB series


| Model No. |  | SL Lubricator dimension (mm) |  |  |  | Carriage dimension (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Height } \\ \text { H } \end{gathered}$ | Width W | Thickness t | Tapped hole S | Standard length L | SL Lubricator overall length Ls |
| MSB 15SL | $\begin{gathered} \mathrm{TE} / \mathrm{TS} \\ \mathrm{E} / \mathrm{S} \end{gathered}$ | 18.5 | 33 | 10 | M4 | $\begin{aligned} & 35.2 \\ & 52.2 \end{aligned}$ | $\begin{aligned} & 60.2 \\ & 77.2 \end{aligned}$ |
| MSB 20SL | $\begin{gathered} \mathrm{TE} / \mathrm{TS} \\ \mathrm{E} / \mathrm{S} \end{gathered}$ | 21.2 | 40.8 | 10 | M6 | $\begin{aligned} & 42 \\ & 61 \end{aligned}$ | $\begin{aligned} & 68 \\ & 87 \end{aligned}$ |
| MSB 25SL | $\begin{gathered} \mathrm{TE} / \mathrm{TS} \\ \mathrm{E} / \mathrm{S} \end{gathered}$ | 24.5 | 47 | 10 | M6 | $\begin{gathered} 54.2 \\ 76 \end{gathered}$ | $\begin{gathered} 80.2 \\ 102 \end{gathered}$ |
| MSB 30SL | $\begin{gathered} \mathrm{TE} / \mathrm{TS} \\ \mathrm{E} / \mathrm{S} \end{gathered}$ | 30.8 | 57 | 10 | M6 | $\begin{gathered} 62 \\ 90.7 \end{gathered}$ | $\begin{gathered} 88 \\ 116.7 \end{gathered}$ |
| MSB 35SL | $\begin{gathered} \mathrm{TE} / \mathrm{TS} \\ \mathrm{E} / \mathrm{S} \\ \mathrm{LE} / \mathrm{LS} \\ \hline \end{gathered}$ | 37 | 68.5 | 10 | M6 | $\begin{gathered} 70.8 \\ 104.8 \\ 130.3 \end{gathered}$ | $\begin{gathered} 98 \\ 132 \\ 157.5 \\ \hline \end{gathered}$ |

Note: Supply the Dust proof series(UU , SS, ZZ, LL, RR)

- MSR series


| Model No. |  | SLL Lubricator dimension (mm) |  |  |  | Carriage dimension (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height H | Width W | Thickness t | Tapped hole S | Standard length L | SL Lubricator overall length Ls |
| MSR 20SL | E/S <br> LE/LS | 24.9 | 43 | 10 | M4 | $\begin{gathered} 83.8 \\ 103.8 \end{gathered}$ | $\begin{aligned} & 103.8 \\ & 123.8 \end{aligned}$ |
| MSR 25SL | E/S <br> LE/LS | 30.2 | 47 | 10 | M6 | $\begin{gathered} 91.5 \\ 109.5 \end{gathered}$ | $\begin{aligned} & 117.5 \\ & 135.5 \end{aligned}$ |
| MSR 30SL | $\mathrm{E} / \mathrm{S}$ <br> LE/LS | 34.5 | 58.6 | 10 | M6 | $\begin{aligned} & 106.4 \\ & 129.2 \end{aligned}$ | $\begin{aligned} & 132.4 \\ & 155.2 \end{aligned}$ |
| MSR 35SL | E/S <br> LE/LS | 40.5 | 69 | 10.3 | M6 | $\begin{aligned} & 119.3 \\ & 147.5 \end{aligned}$ | $\begin{aligned} & 145.9 \\ & 174.1 \end{aligned}$ |
| MSR 45SL | E/S <br> LE/LS | 50.9 | 84 | 15.3 | 1/8PT | $\begin{gathered} 147.8 \\ 183 \end{gathered}$ | $\begin{gathered} 184.8 \\ 220 \end{gathered}$ |
| MSR 55SL | E/S <br> LE/LS | 58.5 | 98 | 15.3 | 1/8PT | $\begin{aligned} & 178.2 \\ & 228.2 \end{aligned}$ | $\begin{aligned} & 216 \\ & 266 \\ & \hline \end{aligned}$ |
| MSR 65SL | LE/LS | 76.5 | 122 | 15 | 1/8PT | 292.6 | 330.4 |

Note: Supply the Dust proof series(UU, SS, ZZ)

- SMR series


| Model No. |  | SL Lubricator dimension (mm) |  |  |  | Carriage dimension (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Height | Width | Thickness | Tapped | Standard | SL Lubricator overall |
| SMR 25SL | E/S | 30.2 | 47 | 10 | M6 | 91.5 | 117.5 |
|  | LE/LS |  |  |  |  | 109.5 | 135.5 |
| SMR 30SL | E/S | 34.5 | 58.6 | 10 | M6 | 106.4 | 132.4 |
|  | LE/LS |  |  |  |  | 129.2 | 155.2 |
| SMR 35SL | E/S | 40.5 | 69 | 10.3 | M6 | 119.3 | 145.9 |
|  | LE/LS |  |  |  |  | 147.5 | 174.1 |
| SMR 45SL | E/S | 50.9 | 84 | 15.3 | 1/8PT | 147.8 | 184.8 |
|  | LE/LS |  |  |  |  | 183 | 220 |
| SMR 55SL | E/S | 58.5 | 98 | 15.3 | 1/8PT | 178.2 | 216 |
|  | LE/LS |  |  |  |  | 228.2 | 266 |
| SMR 65SL | LE/LS | 76.5 | 122 | 15 | 1/8PT | 294.2 | 332 |

Note: Supply the Dust proof series(UU , SS , ZZ)

- SME series


| Model No. |  | SL Lubricator dimension (mm) |  |  |  | Carriage dimension (mm) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Height } \\ \text { H } \end{gathered}$ | Width w | Thickness | Tapped hole S | Standard length L | SL Lubricator overall length Ls |
| SME 15SL | $\begin{gathered} \mathrm{E} / \mathrm{S} \\ \mathrm{LE} / \mathrm{LS} \end{gathered}$ | 20.1 | 33.2 | 10 | M4 | $\begin{aligned} & 59 \\ & 74 \end{aligned}$ | $\begin{aligned} & 84.4 \\ & 99.4 \end{aligned}$ |
| SME 20SL | $\begin{gathered} \text { E/S } \\ \text { LE/LS } \end{gathered}$ | 22.8 | 41.4 | 10 | M6 | $\begin{aligned} & 72.5 \\ & 91.5 \end{aligned}$ | $\begin{gathered} 98.5 \\ 117.5 \end{gathered}$ |
| SME 25SL | $\begin{gathered} \text { E/S } \\ \text { LE/LS } \end{gathered}$ | 26.1 | 47.2 | 10 | M6 | $\begin{gathered} 86 \\ 103 \end{gathered}$ | $\begin{aligned} & 112 \\ & 129 \end{aligned}$ |
| SME 30SL | $\begin{gathered} \text { E/S } \\ \text { LE/LS } \end{gathered}$ | 33.5 | 58.5 | 10 | M6 | $\begin{aligned} & 101.6 \\ & 126.6 \end{aligned}$ | $\begin{aligned} & 127.6 \\ & 152.6 \end{aligned}$ |
| SME 35SL | $\begin{gathered} \mathrm{E} / \mathrm{S} \\ \mathrm{LE} / \mathrm{LS} \end{gathered}$ | 38.5 | 68 | 10 | M6 | $\begin{aligned} & 113.8 \\ & 143.8 \end{aligned}$ | $\begin{aligned} & 140.6 \\ & 170.6 \end{aligned}$ |
| SME 45SL | $\begin{gathered} \text { E/S } \\ \text { LE/LS } \end{gathered}$ | 49 | 83.6 | 15 | 1/8PT | $\begin{aligned} & 132.8 \\ & 167.3 \end{aligned}$ | $\begin{gathered} 170 \\ 204.5 \end{gathered}$ |

Note: Supply the Dust proof series(UU, SS, ZZ)

## Lubrication equipment - Grease gun

Grease gun used different nozzles installed on different oiling the supplementary grease.


Size and working condition :
discharge pressure
discharge rate
weight (excluding the grease)
overall length
width
outside diameter of nozzle

15 MPa
$0.35 \mathrm{~g} /$ stroke
680 g
about 400 mm
about 120 mm
Ф10mm

## Grease nipple and piping joint

## Grease nipple



- OL Type


OL-D


- OS Type

OS-B

OS-C
OS-D



| Model No. |  |  |  |  |  | Dust Proof Type |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | DD |  | ZZ |  | KK |  |
|  |  |  |  |  | MSG17 | G-M3 |  | G-Mзм |  | G-мзм |  | G-M3L |  |
| MSA15 | MSB15 | SME15 |  | MSR20 |  | G-M4 | OL-E | G-M4L | OL-EL | G-M4L | OL-EL | G-M4L | OL-EL |
| MSA2O | MSB20 | SME20 |  |  |  | G-M6 | $\begin{gathered} \text { GS-M6 } \\ \text { OL-B } \end{gathered}$ | G-M6M <br> OL-AL <br> OS-AL | $\begin{gathered} \text { GS-M6M } \\ \text { OL-BLR } \\ \text { os-bL } \end{gathered}$ | G-M6M OL-AL OS-AL | Gs-M6m <br> OL-BLR <br> os-BL | G-M6L <br> OL-AL <br> OS-AL | GS-M6L <br> OL-BLR <br> OS-BL |
| MSA25 | MSB25 | SME25 | SMR25 | MSR25 |  |  |  |  |  |  |  |  |  |
| MSA30 | MSB30 | SME30 | SMR30 | MSR30 |  |  |  |  |  |  |  |  |  |
| MSA35 | MSB35 | SME35 | SMR35 | MSR35 | MSG35 |  | os-B |  |  |  |  |  |  |
| MSA45 | MSB45 | SME45 | SMR45 | MSR45 |  | $\begin{array}{\|cc\|} \hline \text { G-PT1/8 } & \text { GS-PT1/8 } \\ \text { OL-C } & \text { OL-D } \\ \text { OS-C } & \text { OS-D } \\ \hline \end{array}$ |  | G-PT1/8L GS-PT1/8L <br> OL-CL OL-DL <br> OS-CL OS-DL |  | G-PT1/8L GS-PT1/8L <br> OL-CL OLDL <br> os-CL Os-DL |  | G-PT1/8L GS-PT1/8L ol-CL ol-DL os-CL os-DL |  |
| MSA55 |  |  | SMR55 | MSR55 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| MSA65 |  |  | SMR65 | MSR65 |  |  |  |  |  |  |  |  |  |  |  |  |  |

Note: 1. MSA15-ZZ and MSA15-DD use the nipple"G-M4"
2. When MSB15 use the nipple "OL-E", change the nipple to "OL-EL"
3. SMA series and MSA series use the same rail but SMA15-DD , SMA15-ZZ and SMA15-KK use the standard nipple"G-M4L.
4. SMB series and MSB series use the same rail.
5. MSG21 use the nipple "G-M6"series, "GS-M6"series.
6. MSG27 use the nipple "G-M6"series, "GS-M6"series , "OL-B"series "OS-B"series.
7. MSR2O-KK use the nipple"G-M4XL".

The Relationship between the Direction of Lubrication and the Reference Side The standard lubrication fitting is grease nipple (G-M6, G-PT1/8, G-M4). The code of different types of application for lubrication fittings are shown below. For cases other than specified, please contact us for confirmation.

## The relationship between the direction of lubrication and the reference side

Code: C1R1


## Code: C1R2



## Code: C2R1



Code: C2R2


Code: C3R1


Code: C3R2


Code: C4R1


## Code: C4R2



## Lubrication position

The standard mounting locating of carriage is at the center of both ends. As for lateral and top application, please specify when ordering. As shown as below, the lateral application is achieved by using a adapter to connect the grease/oil fitting to the hole on the carriage.

## ubrication location



Lateral usage


| Model No. | Center | Side |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Nipple | G1 | Nipple |  |
| MSA 15 | MSB 15 | G-M4 | M4×0.7P | G-M4 |
| MSA 20 | MSB 20 | G-M6 | M4×0.7P | G-M4 |
| MSA 25 | MSB 25 | G-M6 | M4×0.7P | G-M4 |
| MSA 30 | MSB 30 | G-M6 | M4×0.7P | G-M4 |
| MSA 35 | MSB 35 | G-M6 | M4×0.7P | G-M4 |
| MSA 45 | MSB 45 | G-PT1/8 | M4×0.7P | G-M4 |
| MSA 55 |  | G-PT1/8 | M4×0.7P | G-M4 |
| MSA 65 |  | G-PT1/8 | M4×0.7P | G-M4 |

Note: MSA and MSB series have no top oiling hole for option.


| Model No. | Center | Side |  | Top |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nipple | G1 | Nipple | G2 | O-ring |
| MSG 17 | G-M3 | M3 $\times 0.5$ P | G-M3 | - | - |
| MSG 21 | G-M6 | M4×0.7P | G-M4 | - | - |
| MSG 27 | G-M6 | M4×0.7P | G-M4 | 6.1 | P3 |
| MSG 35 | G-M6 | M4×0.7P | G-M4 | 7.3 | P4 |

Note: Side oiling can't adopt TS-A

| Model No. | Center | Side |  | Top |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nipple | G1 | Nipple | G2 | O-ring |  |
| - | MSR 20 | G-M4 | M4×0.7P | G-M4 | 9.2 | P6 |
| SMR 25 | MSR 25 | G-M6 | M6×0.75P | G-M6 | 10.2 | P7 |
| SMR 30 | MSR 30 | G-M6 | M6×0.75P | G-M6 | 10.2 | P7 |
| SMR 35 | MSR 35 | G-M6 | M6×0.75P | G-M6 | 10.2 | P7 |
| SMR 45 | MSR 45 | G-PT1/8 | M6×0.75P | G-M6 | 10.4 | P7 |
| SMR 55 | MSR 55 | G-PT1/8 | M6×0.75P | G-M6 | 10.4 | P7 |
| SMR 65 | MSR 65 | G-PT1/8 | M6×0.75P | G-M6 | 10.2 | P7 |


| Model No. | Center | Side |  | Top |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nipple | G1 | Nipple | G2 | O-ring |
| SME 15 | G-M4 | M4×0.7P | G-M4 | - | - |
| SME 20 | G-M6 | M4×0.7P | G-M4 | - | - |
| SME 25 | G-M6 | M4×0.7P | G-M4 | - | - |
| SME 30 | G-M6 | M6×0.75P | G-M6 | 10.2 | P7 |
| SME 35 | G-M6 | M6×0.75P | G-M6 | 10.2 | P7 |
| SME 45 | G-PT1/8 | M6×0.75P | G-M6 | 10.2 | P7 |


| Model No. | Center | Side |  | Top |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nipple | G1 | Nipple | G2 | O-ring |
| SMA 15 | G-M4 | M4×0.7P | G-M4 | 7.45 | P4 |
| SMA 20 | G-M6 | M6×0.75P | G-M6 | 7.45 | P4 |
| SMB 15 | G-M4 | M4×0.7P | G-M4 | - | - |
| SMB 20 | G-M6 | M4×0.7P | G-M4 | 6.3 | P3 |
| SMB 25 | G-M6 | M6×0.75P | G-M6 | 7.45 | P4 |
| SMB 30 | G-M6 | M6×0.75P | G-M6 | 7.45 | P4 |

## Surface Treatment



| Model <br> No. | Center oiling <br> hole G | Note |
| :---: | :---: | :---: |
| MSC 7 | $\varnothing 0.8$ | Syringe <br> injection |
| MSC 9 | Ø1.0 | Syringe <br> injection |
| MSC 12 | Ø1.5 | Syringe <br> injection |
| MSC 15 | G-M3 | Grease gun |



| Model No. | Side oiling hole G | Note |
| :---: | :---: | :---: |
| MSD 7 | $\varnothing 1.5$ | Syringe <br> injection |
| MSD 9 | $\varnothing 1.5$ | Syringe <br> injection |
| MSD 12 | $\varnothing 1.5$ | Syringe <br> injection |
| MSD 15 | $\varnothing 1.5$ | Syringe <br> injection |

The surface of the rails and carriages of linear motion system can be treated for anti-corrosive or aesthetic purposes.
The Surface Treatment consists of the following 4 types.

## Electroless Nickel Plating(PS-N)

| Thickness | $\quad$ Unilateral $3 \sim 5 \mu \mathrm{~m}$ |
| :---: | :--- |
| Color | Shiny. |
| Hardness | HV500 |
| Characteristic | 1.Uniformity of the deposits, even on complex shapes. <br> 2.Deposits have good adhesion and excellent corrosion resistance. <br> 3.Provide an inherent lubricity and low coefficient of friction. <br> 4.Deposits have high hardness with resistance to abrasion and great <br> solderability. |
| 5.These are applicable for guideway required of rust prevention or <br> glossy appearance. |  |



Hard Chrome Plating(PS-HC)

| Thickness | $\quad$ Unilateral $5 \mu \mathrm{~m}$ |
| :---: | :--- |
| Color | Silvery white. |
| Hardness | Above HV700 |
| Characteristic | 1.Provide a lustrous and good adhesion. <br> 2.Stability and keep color in a humid atmosphere. <br> 3.These are applicable for pistons and suspension elements <br> applications, provide characteristic high hardness and low <br> coefficient of friction. |
| 4.These are applicable for high hardness, acidproof alkali and abrasion <br> resistance applications. |  |

Black Chrome Plating(PS-C)

| Thickness | Unilateral 10~15 $\mu \mathrm{m}$ |
| :---: | :--- |
| Color | Matte Black. |
| Hardness | HV230~350 |
| Characteristic | 1.High efficiency light absorption characteristics and reduces light <br> refiectivity. <br> 2.Dispersible corrosion current function and excellent corrosion <br> resistance. |
| 3.Uniformity of the deposits. <br> 4.These material are applicable for iron, steel, stainless steel, copper <br> and aluminum. |  |
| 5.These are applicable for semiconductor, LCD, optoelectronics, <br> cleanrooms, automated production packaging / packaging and <br> testing, optics, instrumentation industry. |  |

Black Chrome Plating +Special Fluororesin(PS-CF)

| Thickness | $\quad$ Unilateral $3 \sim 10 \mu \mathrm{~m}$ |
| :---: | :--- |
| Color | Matte Black |
| Hardness | Above HV750 |
| Characteristic | 1.High noise reduction and abrasion resistance. <br> 2.Excellent corrosion resistance (Resistance cyanate) and usually <br> application on high-end semiconductor, LCD, optoelectronics, <br> packaging, packaging and testing, clean room, medical, aerospace and <br> marine screw turbine materials. |
| 3.Biocompatible, ISO10993, apply to Class II or Class I medical equipment. <br> 4.Coating provide the base layer with dense, matte black, stain resistance <br> and anti-corrosion ability, which provides excellent adhesion and a <br> uniform coating layer. |  |



Note: Our standard length for surface treatment is 4 meters except black chrome plating +special fluororesin (PS-CF)which are two meters.
Note: Meet the RoHS \& Reach green product standard.

Data on Comparison of Rust Prevention

| Item | Description |
| :---: | :--- |
| Spray liquid | $5 \% \mathrm{NaCl}$ solution |
| Experimental temperature | $35^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ |
| Spray pressure | $1 \mathrm{~kg} / \mathrm{cm}^{2}$ |
| Spray volume | $1.0 \sim 2.0 \mathrm{ml} / 80 \mathrm{~cm}^{2} / \mathrm{hr}$ |
| Relative humidity | $95 \sim 98 \%$ |

Note: Testing based on ISO 9227:1990 standards.

| Times Species | Original <br> Material | Electroless <br> Nickel <br> Plating <br> (PS-N) | Hard Chrome <br> Plating (PS-HC) | Black <br> Chrome <br> Plating <br> (PS-C) | Black Chrome Plating + Special Fluororesin (PS-CF) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10 min | $\triangle$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 20 min | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |
| 90 min | $\checkmark$ | $\bigcirc$ | $\bigcirc$ | $\triangle$ | $\bigcirc$ |
| 100 min | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\triangle$ | $\bigcirc$ |
| 3 hr | $\bigcirc$ | $\triangle$ | $\bigcirc$ | $\triangle$ | $\bigcirc$ |
| 4 hr | $\bigcirc$ | $\triangle$ | $\triangle$ | $\triangle$ | $\bigcirc$ |
| 5 hr | - | $\triangle$ | $\triangle$ | $\checkmark$ | $\bigcirc$ |
| 26 hr | $\bigcirc$ | $\checkmark$ | $\triangle$ | $\bigcirc$ | $\bigcirc$ |
| 35 hr | $\bigcirc$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ | $\bigcirc$ |
| 48 hr | - | $\checkmark$ | $\checkmark$ | - | $\triangle$ |
| 96 hr | - | $\checkmark$ | $\checkmark$ | - | $\checkmark$ |
| : No rust $\triangle$ : Spotty rust : Light rusted $\bigcirc$ : Completely rusted |  |  |  |  |  |

## Precautions of Linear Guideway

| Species <br> Times | Original <br> Material | Electroless <br> Nickel <br> Plating <br> (PS-N) | Hard Chrome <br> Plating <br> (PS-HC) | Black <br> Chrome <br> Plating (PS-C) | Black Chrome Plating + Special Fluororesin (PS-CF) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Before Test |  |  |  |  |  |
| 26 hr |  |  |  |  |  |
| 96 hr |  |  |  |  |  |

## Handling

- Tilting the linear guideway may cause the carriage falling out from the rail by their own weight.
- Beating or Dropping the linear guideway may cause its function to be damage, even if the product looks intact.
- Do not disassemble the carriage, this may cause contamination to enter into the carriage or decrease the installation accuracy.
- Carrying excessive weight for linear guideway, by two or more people or handling equipment, to avoid causing personal injury or damage of the workpiece possibly.
- Note that to prevent foreign material and foreign body, causing the slider failure, damage and loss of function.


## Lubrication

- Please remove the anti-rust oil in advance and lubricate it before using.
- Do not mix lubricants with others.
- If you are using oil as lubricant, the oil may not be distributed evenly to the ball groove that depending on the application of the mounting orientation. Please contact PMI in such case.
- Moving the carriage back and forth with minimum stroke length of length of 3 carriages after the carriages been greased. To assure the grease is evenly distributed inside of carriage, the mentioned process should be repeated twice at least.


## Using

- The temperature of the place where linear guideways are used should not exceed $80^{\circ} \mathrm{C}$.
- If the carriage must be removed from the rail or remounted onto the rail, be sure to use the dummy rail.
- Using under special conditions, such as constant vibration, high dust or the temperature exceed our suggested...etc., please contact PMI.


## Storage

- When storing the linear guideway, enclose it in a package and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.


[^0]:    Note: The permissible values in table are applicable when the span is 500 mm wide.

[^1]:    Note: Single: Single carriage/ Double: Double carriages closely contacting with each other

[^2]:    Note: The permissible values in table are applicable when the span is 500 mm wide

