

Precision
Ball Screw Spline

Precision Ball Screw Spline

Design Principle

The Precision Ball Screw Spline contains Ball Screw grooves and Ball Spline grooves that cross each other on a single shaft. The Precision Ball Screw Spline nut has a special designed support bearing directly set up on the outer ring of the nuts. The Precision Ball Screw Spline is capable of performing three modes of motion (rotational, linear and spiral) with a single shaft by rotating or stopping the spline nut.

Features

High Positioning Accuracy

The Ball Spline groove profile is designed Gothic arch. By applied preload, the backlash in the rotational direction is eliminated therefore having higher positioning accuracy.

Lightweight and Compact

Spline nut and the support bearing is integration structure. The Spline nut is designed lightweight. Therefore, the highly accurate and compact design is achieved.

Simple Installation

The balls recirculation in ball holder, prevent balls falling from the spline nut while assembling.

Support Bearing

The support bearing of the Ball Screw is designed a contact angle of 45°, thus it has higher axia rigidity, while Ball Spline has a contact angle of 45°, thus it has the average force of axial and radial direction.

Smooth Motion and Lower Nois

As the Ball Screw is adapting end cap recirculation structure, thus can be smooth motion with lower noise.

Fig. 1 Model PBSA

SCARA robot, Assembly robot, Automatic loader, and Machining center's, ATC equipment.

Types and Features

Types of Precision Ball Screw Spline

Types of Precision Ball Screw Spline Model PBSA

Spline nut and the support bearing is integration structure.

Fig. 2 Types of Precision Ball Screw Spline Model PBSA

Product Explanation of Precision Ball Screw Spline

Nomenclature
PBSA-20-20-450-500-S-0.018

Accuracy Standards

The Precision Ball Screw Spline is manufactured with the following specifications.
fBall Screw
Axial clearance XD or less
Lead angle accuracy XC5
(For detailed specifications, see Table 2[A1-6], Table 3[A1-7])

fBall Spline

Clearance in the rotational direction XD or less (FC Xight preload) (For detail specifications, see Section [B2-25])
Accuracy grade XClass H

Action Patterns

Basic Actions

[^0]

Extended Actions

Motion		Action direction	Input		Shaft motion	
			Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotation speed)
Up down forward Up down reverse	5	Vertical direction up	$-N_{1}$ (Reverse)	0	$\begin{gathered} V=-N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5{ }^{-}$	Vertical direction down	N_{1} (Forward)	0	$\begin{gathered} V=N_{1} \quad f l \\ \left(N_{1} \neq 0\right) \end{gathered}$	0
	5^{-}	Rotational direction forward	N_{1}	N_{2} (Forward)	0	N_{2} (Forward) $\left(N_{1}=N_{2} \neq 0\right)$
$\|1 \underset{\sim}{\sim} 1\|$	5^	Vertical direction up	$-N_{1}$	0	$\begin{gathered} V=-N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5 \sim$	Vertical direction down	N_{1}	0	$\begin{gathered} V=N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5{ }^{-}$	Rotational direction reverse	$-N_{1}$	$-N_{2}$ (Reverse)	0	$\begin{aligned} & -N_{2} \text { (Reverse) } \\ & \left(-N_{l}=-N_{2} \neq 0\right) \end{aligned}$
down Up forward down Up reverse	5	Vertical direction down	N_{1}	0	$\begin{gathered} V=N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5{ }^{-}$	Vertical direction up	$-N_{1}$	0	$\begin{gathered} V=-N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	5^{-}	Rotational direction forward	N_{1}	N_{2}	0	$\begin{gathered} N_{2} \\ \left(N_{l}=N_{2} \neq 0\right) \end{gathered}$
$\|1 \smile 1\|$	5^	Vertical direction down	N_{I}	0	$\begin{gathered} V=N_{l} \quad f l \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5 \sim$	Vertical direction up	$-N_{1}$	0	$\begin{gathered} V=-N_{l} \quad \text { fl } \\ \left(N_{l} \neq 0\right) \end{gathered}$	0
	$5{ }^{-}$	Rotational direction down	$-N_{1}$	$-N_{2}$	0	$\begin{gathered} -N_{2} \\ \left(-N_{1}=-N_{2} \neq 0\right) \end{gathered}$

Example of Assembly

Example of installing the ball screw nut input pulley and the spline nut input pulley inside the housing and the maximum stroke can be achieved.

Ball Spline

Ball Screw

Screw size			Effective turns Circuit \times Row	Basic load rating		Nut diameter	L2	X1	W2	A1	D4g6	D5									Support	basic load		ass
O.D.	Inner diameter	Lead		$\begin{gathered} \mathrm{Ca} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Co } \\ (\mathrm{kN}) \end{gathered}$	D3 ${ }_{\text {h7 }}$															$\begin{gathered} \mathrm{Ca} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \text { Co } \\ (\mathrm{kN}) \end{gathered}$	Nut (kg)	Shaft (kg/m)
16	11	16	1.8×1	3.8	6.8	36	40	4.5	56	64	48	32	32	6	21	25	M $4 \times 0.7 \mathrm{P}$	2.5	13	10	6.74	6.36	0.31	0.83
20	14	20	1.8×1	5.9	12.2	43.5	49	4.5	64	72	56	39	39	6	21	31	M $5 \times 0.8 \mathrm{P}$	2	13	11	7.49	8.16	0.48	1.25
25	18	25	1.8×1	8.9	19.1	52	55	5.5	75	86	66	47	47	7	25	38	M6×1P	3	17	13	9.45	10.65	0.66	1.85

[^0]: l Ball screw lead Fmm G
 N_{2} Spline nut rotational speed $\mathrm{Fmin}^{-1} \mathrm{G}$
 N_{l} Ball screw nut rotational speed Fmin $^{-1} \mathrm{G} \quad V$ Feed rate $\mathrm{Fmm} /$ min G

