

Precision Ball Screw Spline

Design Principle

The Precision Ball Screw Spline contains Ball Screw grooves and Ball Spline grooves that cross each other on a single shaft. The Precision Ball Screw Spline nut has a special designed support bearing directly set up on the outer ring of the nuts. The Precision Ball Screw Spline is capable of performing three modes of motion (rotational, linear and spiral) with a single shaft by rotating or stopping the spline nut.

Fig.1 Model PBSA

Applications

SCARA robot, Assembly robot, Automatic loader, and Machining center's, ATC equipment.

Features

High Positioning Accuracy

The Ball Spline groove profile is designed Gothic arch. By applied preload, the backlash in the rotational direction is eliminated therefore having higher positioning accuracy.

Lightweight and Compact

Spline nut and the support bearing is integration structure. The Spline nut is designed lightweight. Therefore, the highly accurate and compact design is achieved.

Simple Installation

The balls recirculation in ball holder, prevent balls falling from the spline nut while assembling.

Support Bearing

The support bearing of the Ball Screw is designed a contact angle of 45°, thus it has higher axial rigidity, while Ball Spline has a contact angle of 45°, thus it has the average force of axial and radial direction.

Smooth Motion and Lower Noise

As the Ball Screw is adapting end cap recirculation structure, thus can be smooth motion with lower noise.

Types and Features

Types of Precision Ball Screw Spline

Types of Precision Ball Screw Spline Model PBSA

Spline nut and the support bearing is integration structure.

Fig.2 Types of Precision Ball Screw Spline Model PBSA

Product Explanation of Precision Ball Screw Spline

Accuracy Standards

The Precision Ball Screw Spline is manufactured with the following specifications.

*f*Ball Screw Axial clearance ∞ or less Lead angle accuracy ∞5 (For detailed specifications, see **Table 2[A1-6]**, **Table 3[A1-7]**)

JBall Spline Clearance in the rotational direction XO or less (FC Xlight preload) (For detail specifications, see Section [B2-25]) Accuracy grade XClass H

PRECISION Precision Ball Screw Spline

Fig.3 Model PBSA

Table 1 Accuracy Standards												
Model No.	С	D	E	F								
PBSA 1616	0.018	0.021	0.016	0.020								
PBSA 2020	0.018	0.021	0.016	0.020								
PBSA 2525	0.021	0.021	0.018	0.024								

Action Patterns

Basic Actions

l Ball screw lead *Emm* G

 N_2 Spline nut rotational speed $F_{min^{-1}}$ G

 N_I Ball screw nut rotational speed $Emin^{-1}$ G V Feed rate Emm/min G

			In	put	Shaft motion					
Motion		Action direction	Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotation speed)				
Vertical		Vertical direction → down	N_I		$V = N_l \cdot l$	â				
	(I)	Rotational direction $\rightarrow 0$	(Forward)	0	(N _I ≠0)	0				
	2	Vertical direction \rightarrow up	-N1	0	$V = -N_l \cdot l$	0				
		Rotational direction \rightarrow 0	(Reverse)	0	(N _I ≠0)					
Rotation		Vertical direction $\rightarrow 0$		N_2		N_2 (Forward)				
	Û	Rotational direction → forward	NI	(Forward)	0	$(N_1 = N_2 \neq 0)$				
	(2)	Vertical direction $\rightarrow 0$	-N/	-N2	0	-N2 (Reverse)				
·		Vertical direction → reverse	-14]	(Reverse)	U	$(-N_1 = -N_2 \neq 0)$				
Spiral		Vertical direction \rightarrow up		N_2	1 7 1 7 - 1	N_2				
	(I)	Rotational direction → forward	0	(N2≠0)	$V = N_2 \cdot l$	(Forward)				
		Vertical direction → down		-N2		-No				
	(2)	Rotational direction → reverse	0	(-N ₂ ≠0)	$V = -N_2 \cdot l$	(Reverse)				

Extended Actions

			Inp	out	Shaft motion					
Motion		Action direction	Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotation speed)				
Up down forward Up down reverse	5	Vertical direction up	-N ₁ (Reverse)	0	$V = -N_1 fl$ $(N_1 \neq 0)$	0				
	5`	Vertical direction down	N ₁ (Forward)	0	$V = N_1 fl$ $(N_1 \neq 0)$	0				
	51	Rotational direction forward	NĮ	N2 (Forward)	0	N_2 (Forward) $(N_1 = N_2 \neq 0)$				
	5^	Vertical direction up	-N1	0	$V = -N_1 fl$ $(N_1 \neq 0)$	0				
0	5~	Vertical direction down	NI	0	$V = N_I fl$ $(N_I \neq 0)$	0				
	5-	Rotational direction reverse	-N1	-N2 (Reverse)	0	$-N_2$ (Reverse) $(-N_1=-N_2\neq 0)$				
down Up forward down Up reverse	5	Vertical direction down	N_I	0	$V=N_1$ fl ($N_1\neq 0$)	0				
	5`	Vertical direction up	-N1	0	$V = -N_I fl$ $(N_I \neq 0)$	0				
	5 1	Rotational direction forward	N_I	N_2	0	N_2 $(N_1 = N_2 \neq 0)$				
	5^	Vertical direction down	N_I	0	$V=N_I fl$ $(N_I \neq 0)$	0				
	5~	Vertical direction up	-N1	0	$V = -N_I fl$ $(N_I \neq 0)$	0				
	5-	Rotational direction down	-N1	-N2	0	$-N_2$ (- $N_1 = -N_2 \neq 0$)				

A2-9

			Inp	out	Shaft motion					
Motion		Action direction	Ball screw pulley	Ball spline pulley	Vertical direction (speed)	Rotational direction (rotation speed)				
Down → forward → up → reverse	1	Vertical direction \rightarrow down	Nį	0	$V=N_{1} \cdot l$ $(N_{1}\neq 0)$	0				
	2	Rotationa direction → forward	NI	N2	0	$N_2 \\ (N_1 = N_2 \neq 0)$				
	3	Vertical direction \rightarrow up	-N1	0	$V=-N_1 \cdot l$ $(N_1 \neq 0)$	0				
3	4	Rotational direction → reverse	-N1	-N2	0	$-N_2$ (-N ₁ = -N ₂ $\neq 0$)				
Down → up → reverse → forward	1	Vertical direction \rightarrow down	NĮ	0	$V=N_1 \cdot l$ $(N_1 \neq 0)$	0				
	2	Vertical direction \rightarrow up	-N1	0	$V=-N_1 \cdot l$ $(N_1 \neq 0)$	0				
	3	Rotational direction → reverse	-N1	-N2	0	$-N_2$ $(-N_1 = -N_2 \neq 0)$				
001	4	Rotational direction → forward	NĮ	N2	0	N_2 $(N_1 = N_2 \neq 0)$				

Example of Assembly

Example of installing the ball screw nut input pulley and the spline nut input pulley inside the housing and the maximum stroke can be achieved.

※*PMI* A2-11

A2-10

Specifications Precision Ball Screw Spline

Ball Spline

_	Shaft	Inner diameter	Basic load rating		Basic rat	torque ing	Static permissible	N diam	ut neter		v	14/2				Ŧ			C. I	-	Support be load r	aring basic ating	M	ass
d	liameter		Ca (kN)	Co (kN)	C _⊤ (N · m)	C _{ot} (N · m)	moment M _A (N · m)	D _{h7}	D2	L	х	W1	A	D	1 _{g6}	I	L1	vv	S×t	E	Ca (kN)	Co (kN)	Nut (kg)	Shaft (kg/m)
	16	11	6.9	12.4	31.4	34.3	60	36	31	50	4.5	56	64	+ /	48	6	21	30	M4×0.7P×6	10	6.74	6.36	0.33	0.83
	20	14	10.1	17.8	56.8	55.8	120	43.5	35	63	4.5	64	72	!!!	56	6	21	36	M5×0.8P×8	12	7.49	8.16	0.48	1.25
	25	18	15.2	25.3	105	103	180	52	42	71	5.5	75	86	5 (56	7	25	44	M5×0.8P×8	13	9.45	10.65	0.75	1.85

Ball Screw

Screw size			Effective turns	Basio rat	: load ing	Nut diameter	1.2	¥1	W2	۸1	D4 -	D5	D6	Т1	12	\ \ /2	C 1	B	R1	E1	Support bear rat	ing basic load ing	Ma	ass
0.D.	Inner diameter	Lead	Circuit×Row	Ca (kN)	Co (kN)	D3 _{h7}		~1	VVZ		1 D-1g6	05	20			~~~	51	D	ы		Ca (kN)	Co (kN)	Nut (kg)	Shaft (kg/m)
16	11	16	1.8×1	3.8	6.8	36	40	4.5	56	64	48	32	32	6	21	25	M4×0.7P	2.5	13	10	6.74	6.36	0.31	0.83
20	14	20	1.8×1	5.9	12.2	43.5	49	4.5	64	72	56	39	39	6	21	31	M5×0.8P	2	13	11	7.49	8.16	0.48	1.25
25	18	25	1.8×1	8.9	19.1	52	55	5.5	75	86	66	47	47	7	25	38	M6×1P	3	17	13	9.45	10.65	0.66	1.85